Effects of polycyclic aromatic hydrocarbon exposure on mitochondrial DNA copy number.

Sun-Haeng Choi, Bolormaa Ochirpurev, Hwa Yeong Jo, Jong-Uk Won, Akira Toriba, Heon Kim
{"title":"Effects of polycyclic aromatic hydrocarbon exposure on mitochondrial DNA copy number.","authors":"Sun-Haeng Choi, Bolormaa Ochirpurev, Hwa Yeong Jo, Jong-Uk Won, Akira Toriba, Heon Kim","doi":"10.1177/09603271231216968","DOIUrl":null,"url":null,"abstract":"<p><p>Airborne polycyclic aromatic hydrocarbon (PAH) exposure can adversely affect human health by generating reactive oxygen species (ROS) and increasing oxidative stress, which causes changes in mitochondrial DNA copy number (mtDNAcn), a key indicator of mitochondrial damage and dysfunction. This study aimed to determine the effects of atmospheric benzo[a]pyrene (BaP) and 1-nitropyrene (1-NP) exposure on mtDNAcn in humans. One hundred and eight adults living in Cheongju, South Korea, were included in this study. Atmospheric BaP and 1-NP concentrations and urinary 6-hydroxy-1-nitropyrene (6-OHNP), N-acetyl-1-aminopyrene (1-NAAP), and 1-hydroxypyrene concentrations were measured. Blood samples were also collected to assess mtDNAcn. The mean mtDNAcn was 9.74 (SD 4.46). mtDNAcn decreased significantly with age but was not significantly associated with sex, sampling season, or smoking habit. While there was a borderline significant increase in mtDNAcn with increasing ambient total PAH levels, ambient PAH or urinary 1-hydroxypyrene concentrations showed no significant association with mtDNAcn. However, urinary 6-OHNP or 1-NAAP concentrations, 1-NP metabolites, were significantly associated with mtDNAcn. These results suggest that the metabolism of absorbed NPs generates excess ROS, which damages mitochondrial DNA, resulting in increased mtDNAcn.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & experimental toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603271231216968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Airborne polycyclic aromatic hydrocarbon (PAH) exposure can adversely affect human health by generating reactive oxygen species (ROS) and increasing oxidative stress, which causes changes in mitochondrial DNA copy number (mtDNAcn), a key indicator of mitochondrial damage and dysfunction. This study aimed to determine the effects of atmospheric benzo[a]pyrene (BaP) and 1-nitropyrene (1-NP) exposure on mtDNAcn in humans. One hundred and eight adults living in Cheongju, South Korea, were included in this study. Atmospheric BaP and 1-NP concentrations and urinary 6-hydroxy-1-nitropyrene (6-OHNP), N-acetyl-1-aminopyrene (1-NAAP), and 1-hydroxypyrene concentrations were measured. Blood samples were also collected to assess mtDNAcn. The mean mtDNAcn was 9.74 (SD 4.46). mtDNAcn decreased significantly with age but was not significantly associated with sex, sampling season, or smoking habit. While there was a borderline significant increase in mtDNAcn with increasing ambient total PAH levels, ambient PAH or urinary 1-hydroxypyrene concentrations showed no significant association with mtDNAcn. However, urinary 6-OHNP or 1-NAAP concentrations, 1-NP metabolites, were significantly associated with mtDNAcn. These results suggest that the metabolism of absorbed NPs generates excess ROS, which damages mitochondrial DNA, resulting in increased mtDNAcn.

多环芳烃暴露对线粒体DNA拷贝数的影响。
多环芳烃(PAH)暴露在空气中会产生活性氧(ROS),增加氧化应激,导致线粒体DNA拷贝数(mtDNAcn)的变化,这是线粒体损伤和功能障碍的关键指标,从而对人体健康产生不利影响。本研究旨在确定大气中苯并[a]芘(BaP)和1-硝基芘(1-NP)暴露对人类mtDNAcn的影响。居住在韩国清州的108名成年人被纳入了这项研究。测定大气BaP和1-NP浓度以及尿中6-羟基-1-硝基芘(6-OHNP)、n -乙酰-1-氨基芘(1-NAAP)和1-羟基芘浓度。同时采集血样评估mtDNAcn。平均mtDNAcn为9.74 (SD 4.46)。mtDNAcn随年龄显著下降,但与性别、采样季节或吸烟习惯无显著相关性。虽然mtDNAcn随着环境总多环芳烃水平的增加而显著增加,但环境多环芳烃或尿中1-羟基芘浓度与mtDNAcn无显著相关性。然而,尿中6-OHNP或1-NAAP浓度(1-NP代谢物)与mtDNAcn显著相关。这些结果表明,吸收的NPs代谢产生过量的ROS,损害线粒体DNA,导致mtDNAcn增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信