{"title":"The Effects of Vitamin D on Movement and Cognitive Function in Senile Mice After Sevoflurane Anaesthesia.","authors":"Jialei Zhang, Xiaoling Zhang, Jun Zhao, Jie Wu","doi":"10.1080/0361073X.2023.2282350","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vitamin D (VD) is a neuroactive steroid involved in many brain functions, such as neurotrophic, neuroimmune control and neurotransmission, which affects the growth and function of the brain. The purpose of this study is to explore the effect of VD on motor and cognitive function of aged mice after sevoflurane anesthesia.</p><p><strong>Method: </strong>We established sevoflurane anesthesia model and VD(-) and VD(+) mice model. The VD concentration of mice in each group was determined by enzyme-linked immunosorbent assay (ELISA). An open-field test was used to evaluate the mice's capacity for movement and exploration. A Y-maze test was used to gauge the mice's short-term memory. The primary purpose of the water-maze experiment was to examine mice's long-term spatial memory.</p><p><strong>Results: </strong>The ELISA results showed that the model was successfully constructed. In the open-field test, VD increased the exercise distance of mice (<i>P</i> < .05). In the Y-maze experiment, VD improved short-term memory impairment in mice (<i>P</i> < .05). In the water-maze test, VD increased the activity time and platform crossing number of mice in the target quadrant. (<i>P</i> < .05).</p><p><strong>Conclusion: </strong>Sevoflurane anesthesia caused cognitive dysfunction in aged mice, including reduced learning ability, memory loss, lower motor and exploratory abilities and depression, and VD deficiency aggravated these impairments. By supplementing with VD, learning ability and long-term memory were enhanced, motor and exploratory abilities were improved, and depression levels were reduced. Anxiety was also improved.</p>","PeriodicalId":12240,"journal":{"name":"Experimental Aging Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Aging Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/0361073X.2023.2282350","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Vitamin D (VD) is a neuroactive steroid involved in many brain functions, such as neurotrophic, neuroimmune control and neurotransmission, which affects the growth and function of the brain. The purpose of this study is to explore the effect of VD on motor and cognitive function of aged mice after sevoflurane anesthesia.
Method: We established sevoflurane anesthesia model and VD(-) and VD(+) mice model. The VD concentration of mice in each group was determined by enzyme-linked immunosorbent assay (ELISA). An open-field test was used to evaluate the mice's capacity for movement and exploration. A Y-maze test was used to gauge the mice's short-term memory. The primary purpose of the water-maze experiment was to examine mice's long-term spatial memory.
Results: The ELISA results showed that the model was successfully constructed. In the open-field test, VD increased the exercise distance of mice (P < .05). In the Y-maze experiment, VD improved short-term memory impairment in mice (P < .05). In the water-maze test, VD increased the activity time and platform crossing number of mice in the target quadrant. (P < .05).
Conclusion: Sevoflurane anesthesia caused cognitive dysfunction in aged mice, including reduced learning ability, memory loss, lower motor and exploratory abilities and depression, and VD deficiency aggravated these impairments. By supplementing with VD, learning ability and long-term memory were enhanced, motor and exploratory abilities were improved, and depression levels were reduced. Anxiety was also improved.
期刊介绍:
Experimental Aging Research is a life span developmental and aging journal dealing with research on the aging process from a psychological and psychobiological perspective. It meets the need for a scholarly journal with refereed scientific papers dealing with age differences and age changes at any point in the adult life span. Areas of major focus include experimental psychology, neuropsychology, psychobiology, work research, ergonomics, and behavioral medicine. Original research, book reviews, monographs, and papers covering special topics are published.