{"title":"Generalized cut trees for edge-connectivity","authors":"On-Hei Solomon Lo , Jens M. Schmidt","doi":"10.1016/j.jctb.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>We present three cut trees of graphs, each of them giving insights into the edge-connectivity structure. All three cut trees have in common that they are defined with respect to a given binary symmetric relation <em>R</em> on the vertex set of the graph, which generalizes Gomory-Hu trees. Applying these cut trees, we prove the following:</p><ul><li><span>•</span><span><p>A pair of vertices <span><math><mo>{</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>}</mo></math></span> of a graph <em>G</em> is <em>pendant</em> if <span><math><mi>λ</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo></mo><mo>{</mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>d</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>}</mo></math></span>. Mader showed in 1974 that every simple graph with minimum degree <em>δ</em> contains at least <span><math><mi>δ</mi><mo>(</mo><mi>δ</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span> pendant pairs. We improve this lower bound to <span><math><mi>δ</mi><mi>n</mi><mo>/</mo><mn>24</mn></math></span> for every simple graph <em>G</em> on <em>n</em> vertices with <span><math><mi>δ</mi><mo>≥</mo><mn>5</mn></math></span> or <span><math><mi>λ</mi><mo>≥</mo><mn>4</mn></math></span> or vertex connectivity <span><math><mi>κ</mi><mo>≥</mo><mn>3</mn></math></span>, and show that this is optimal up to a constant factor with regard to every parameter.</p></span></li><li><span>•</span><span><p>Every simple graph <em>G</em> satisfying <span><math><mi>δ</mi><mo>></mo><mn>0</mn></math></span> has <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></math></span> <em>δ</em>-edge-connected components. Moreover, every simple graph <em>G</em> that satisfies <span><math><mn>0</mn><mo><</mo><mi>λ</mi><mo><</mo><mi>δ</mi></math></span> has <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> cuts of size less than <span><math><mi>min</mi><mo></mo><mo>{</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>λ</mi><mo>,</mo><mi>δ</mi><mo>}</mo></math></span>, and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mo>⌊</mo><mn>2</mn><mi>α</mi><mo>⌋</mo></mrow></msup><mo>)</mo></math></span> cuts of size at most <span><math><mi>min</mi><mo></mo><mo>{</mo><mi>α</mi><mo>⋅</mo><mi>λ</mi><mo>,</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> for any given real number <span><math><mi>α</mi><mo>≥</mo><mn>1</mn></math></span>.</p></span></li><li><span>•</span><span><p>A cut is <em>trivial</em> if it or its complement in <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is a singleton. We provide an alternative proof of the following recent result of Lo et al.: Given a simple graph <em>G</em> on <em>n</em> vertices that satisfies <span><math><mi>δ</mi><mo>></mo><mn>0</mn></math></span>, we can compute vertex subsets of <em>G</em> in near-linear time such that contracting these vertex subsets separately preserves all non-trivial min-cuts of <em>G</em> and leaves a graph having <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></math></span> vertices and <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges.</p></span></li></ul></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"165 ","pages":"Pages 47-67"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000977","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present three cut trees of graphs, each of them giving insights into the edge-connectivity structure. All three cut trees have in common that they are defined with respect to a given binary symmetric relation R on the vertex set of the graph, which generalizes Gomory-Hu trees. Applying these cut trees, we prove the following:
•
A pair of vertices of a graph G is pendant if . Mader showed in 1974 that every simple graph with minimum degree δ contains at least pendant pairs. We improve this lower bound to for every simple graph G on n vertices with or or vertex connectivity , and show that this is optimal up to a constant factor with regard to every parameter.
•
Every simple graph G satisfying has δ-edge-connected components. Moreover, every simple graph G that satisfies has cuts of size less than , and cuts of size at most for any given real number .
•
A cut is trivial if it or its complement in is a singleton. We provide an alternative proof of the following recent result of Lo et al.: Given a simple graph G on n vertices that satisfies , we can compute vertex subsets of G in near-linear time such that contracting these vertex subsets separately preserves all non-trivial min-cuts of G and leaves a graph having vertices and edges.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.