{"title":"An optimized 3D-printed capsule scaffold utilizing artificial neural network for the targeted delivery of chlorogenic acid to the colon.","authors":"Yingsa Wang, Hongzhu Chen, Qiannan Liu, Ruixuan Zhao, Wei Liu, Shucheng Liu, Liang Zhang, Honghai Hu","doi":"10.1016/j.foodres.2023.113612","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorogenic acid (CGA) is an important bioactive polyphenol with extensive biological properties. This study aimed to fabricate an optimized three-dimensional (3D)-printed capsule scaffold and CGA capsules for targeted delivery of hydrophobic CGA to the colon. The optimized printing parameters identified using the neural network model were a temperature of 170 °C, a printing speed of 20 mm/s, and a nozzle diameter of 0.3 mm. The capsules exhibited slow releasing properties of CGA, and the releasing rates of Eudragit®FS 30D-sealed capsules (due to more cracks and voids) were faster than those of Eudragit®S100-sealed capsules. The Ritger-peppas model was the best fitting model to describe the releasing process of CGA from 8 CGA capsules (R<sup>2</sup> ≥ 0.98). All CGA capsules exhibited shear-thinning properties with stable sol-gel viscosity at low shear rates. FTIR spectra confirmed the formation of non-covalent bonds between CGA and the sol. Overall, the obtained 3D-printed capsules provided a promising carrier for the targeted delivery of CGA in the development of personalized dietary supplements.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"174 Pt 1","pages":"113612"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2023.113612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorogenic acid (CGA) is an important bioactive polyphenol with extensive biological properties. This study aimed to fabricate an optimized three-dimensional (3D)-printed capsule scaffold and CGA capsules for targeted delivery of hydrophobic CGA to the colon. The optimized printing parameters identified using the neural network model were a temperature of 170 °C, a printing speed of 20 mm/s, and a nozzle diameter of 0.3 mm. The capsules exhibited slow releasing properties of CGA, and the releasing rates of Eudragit®FS 30D-sealed capsules (due to more cracks and voids) were faster than those of Eudragit®S100-sealed capsules. The Ritger-peppas model was the best fitting model to describe the releasing process of CGA from 8 CGA capsules (R2 ≥ 0.98). All CGA capsules exhibited shear-thinning properties with stable sol-gel viscosity at low shear rates. FTIR spectra confirmed the formation of non-covalent bonds between CGA and the sol. Overall, the obtained 3D-printed capsules provided a promising carrier for the targeted delivery of CGA in the development of personalized dietary supplements.