Luana Boumendil, Morgane Fontaine, Vincent Lévy, Kim Pacchiardi, Raphaël Itzykson, Lucie Biard
{"title":"Drug combinations screening using a Bayesian ranking approach based on dose–response models","authors":"Luana Boumendil, Morgane Fontaine, Vincent Lévy, Kim Pacchiardi, Raphaël Itzykson, Lucie Biard","doi":"10.1002/bimj.202200332","DOIUrl":null,"url":null,"abstract":"<p>Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose–response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank-based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4-parameter log-logistic (4PLL) model was used to estimate dose–response curves of dose–candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose–response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202200332","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202200332","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose–response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank-based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4-parameter log-logistic (4PLL) model was used to estimate dose–response curves of dose–candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose–response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.