{"title":"Allocating Mental Effort in Cognitive Tasks: A Model of Motivation in the ACT-R Cognitive Architecture.","authors":"Yuxue C Yang, Andrea Stocco","doi":"10.1111/tops.12711","DOIUrl":null,"url":null,"abstract":"<p><p>Motivation is the driving force that influences people's behaviors and interacts with many cognitive functions. Computationally, motivation is represented as a cost-benefit analysis that weighs efforts and rewards in order to choose the optimal actions. Shenhav and colleagues proposed an elegant theory, the Expected Value of Control (EVC), which describes the relationship between cognitive efforts, costs, and rewards. In this paper, we propose a more fine-grained and detailed motivation framework that incorporates the principles of EVC into the ACT-R cognitive architecture. Specifically, motivation is represented as a specific slot in the Goal buffer with a corresponding scalar value, M, that is translated into the reward value R<sub>t</sub> that is delivered when the goal is reached. This implementation is tested in two models. The first model is a high-level model that reproduces the EVC predictions with abstract actions. The second model is an augmented version of an existing ACT-R model of the Simon task. The motivation mechanism is shown to permit optimal effort allocation and reproduce known phenomena. Finally, the broader implications of our mechanism are discussed.</p>","PeriodicalId":47822,"journal":{"name":"Topics in Cognitive Science","volume":" ","pages":"74-91"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Cognitive Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/tops.12711","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation is the driving force that influences people's behaviors and interacts with many cognitive functions. Computationally, motivation is represented as a cost-benefit analysis that weighs efforts and rewards in order to choose the optimal actions. Shenhav and colleagues proposed an elegant theory, the Expected Value of Control (EVC), which describes the relationship between cognitive efforts, costs, and rewards. In this paper, we propose a more fine-grained and detailed motivation framework that incorporates the principles of EVC into the ACT-R cognitive architecture. Specifically, motivation is represented as a specific slot in the Goal buffer with a corresponding scalar value, M, that is translated into the reward value Rt that is delivered when the goal is reached. This implementation is tested in two models. The first model is a high-level model that reproduces the EVC predictions with abstract actions. The second model is an augmented version of an existing ACT-R model of the Simon task. The motivation mechanism is shown to permit optimal effort allocation and reproduce known phenomena. Finally, the broader implications of our mechanism are discussed.
期刊介绍:
Topics in Cognitive Science (topiCS) is an innovative new journal that covers all areas of cognitive science including cognitive modeling, cognitive neuroscience, cognitive anthropology, and cognitive science and philosophy. topiCS aims to provide a forum for: -New communities of researchers- New controversies in established areas- Debates and commentaries- Reflections and integration The publication features multiple scholarly papers dedicated to a single topic. Some of these topics will appear together in one issue, but others may appear across several issues or develop into a regular feature. Controversies or debates started in one issue may be followed up by commentaries in a later issue, etc. However, the format and origin of the topics will vary greatly.