Follicular reconstruction and neo-oogenesis in xenotransplantation of human ovarian isolated cells derived from chemotherapy-induced POF patients.

IF 5.7 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Sara Khaleghi, Farideh Eivazkhani, Somayeh Tavana, Ashraf Moini, Marefat Ghaffari Novin, Petkov Stoyan, Hamid Nazarian, Rouhollah Fathi
{"title":"Follicular reconstruction and neo-oogenesis in xenotransplantation of human ovarian isolated cells derived from chemotherapy-induced POF patients.","authors":"Sara Khaleghi, Farideh Eivazkhani, Somayeh Tavana, Ashraf Moini, Marefat Ghaffari Novin, Petkov Stoyan, Hamid Nazarian, Rouhollah Fathi","doi":"10.1186/s13036-023-00384-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Developing new strategies to restore fertility in patients with chemotherapy-induced Premature Ovarian Failure (Chemo-POF) is important. We aimed to construct an Artificial Ovary (AO) by seeding Human Ovarian Cortical Cells (HOCCs) into Human ovarian Decellularized Cortical Tissue (DCT). We assessed the AO's ability to produce new ovarian follicles following xenotransplantation to NMRI mice.</p><p><strong>Material and methods: </strong>The DCTs were prepared, and cell removal was confirmed through DNA content, MTT assay, DAPI and H&E staining. Next, HOCCs were isolated from both Chemo-POF and Trans (as a control group) ovarian patients. The HOCCs were characterized using immunostaining (FRAGILIS, Vimentin, and Inhibin α) and real time PCR (DDX4, STELLA, FRAGILIS, Vimentin, FSH-R, KI67) assays. The HOCCs were then seeded into the DCTs and cultured for one week to construct an AO, which was subsequently xenotransplanted into the mice. The existence of active follicles within the AO was studied with H&E and immunofluorescence (GDF9) staining, Real-time PCR (GDF9, ZP3) and hormone analysis (Estradiol, FSH and AMH).</p><p><strong>Results: </strong>The results of gene expression and immunostaining showed that 85-86% of the isolated cells from both Trans and Chemo-POF groups were positive for vimentin, while 2-5% were granulosa cells and OSCs were less than 3%. After xenotransplantation, histological study confirmed the presence of morphologically healthy reconstructed human ovarian follicles. Additionally, immunofluorescence staining of GDF9 and hormonal assay confirmed the presence of secretory-active follicles on the AO.</p><p><strong>Conclusion: </strong>Our findings demonstrate that an artificial ovary produced by seeding HOCCs on DCT can support HOCCs proliferation as well as neo-oogenesis, and enable sex hormone secretion following xenotransplantation.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"17 1","pages":"70"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662631/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-023-00384-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Developing new strategies to restore fertility in patients with chemotherapy-induced Premature Ovarian Failure (Chemo-POF) is important. We aimed to construct an Artificial Ovary (AO) by seeding Human Ovarian Cortical Cells (HOCCs) into Human ovarian Decellularized Cortical Tissue (DCT). We assessed the AO's ability to produce new ovarian follicles following xenotransplantation to NMRI mice.

Material and methods: The DCTs were prepared, and cell removal was confirmed through DNA content, MTT assay, DAPI and H&E staining. Next, HOCCs were isolated from both Chemo-POF and Trans (as a control group) ovarian patients. The HOCCs were characterized using immunostaining (FRAGILIS, Vimentin, and Inhibin α) and real time PCR (DDX4, STELLA, FRAGILIS, Vimentin, FSH-R, KI67) assays. The HOCCs were then seeded into the DCTs and cultured for one week to construct an AO, which was subsequently xenotransplanted into the mice. The existence of active follicles within the AO was studied with H&E and immunofluorescence (GDF9) staining, Real-time PCR (GDF9, ZP3) and hormone analysis (Estradiol, FSH and AMH).

Results: The results of gene expression and immunostaining showed that 85-86% of the isolated cells from both Trans and Chemo-POF groups were positive for vimentin, while 2-5% were granulosa cells and OSCs were less than 3%. After xenotransplantation, histological study confirmed the presence of morphologically healthy reconstructed human ovarian follicles. Additionally, immunofluorescence staining of GDF9 and hormonal assay confirmed the presence of secretory-active follicles on the AO.

Conclusion: Our findings demonstrate that an artificial ovary produced by seeding HOCCs on DCT can support HOCCs proliferation as well as neo-oogenesis, and enable sex hormone secretion following xenotransplantation.

化疗诱导的POF患者卵巢分离细胞异种移植的卵泡重建和新卵发生。
背景:开发新的策略来恢复化疗性卵巢早衰(Chemo-POF)患者的生育能力是很重要的。目的通过将人卵巢皮质细胞(HOCCs)植入人卵巢脱细胞皮质组织(DCT),构建人工卵巢(AO)。我们评估了异种移植到NMRI小鼠后AO产生新卵泡的能力。材料和方法:制备dct,通过DNA含量、MTT、DAPI和H&E染色证实细胞去除。接下来,从Chemo-POF和Trans(作为对照组)卵巢患者中分离hocc。采用免疫染色法(FRAGILIS、Vimentin和Inhibin α)和实时PCR法(DDX4、STELLA、FRAGILIS、Vimentin、FSH-R、KI67)对hocc进行表征。然后将hocc植入dct,培养一周构建AO,随后将其异种移植到小鼠体内。采用H&E和免疫荧光(GDF9)染色、Real-time PCR (GDF9、ZP3)和激素分析(雌二醇、FSH和AMH)研究AO内活性卵泡的存在。结果:基因表达和免疫染色结果显示,Trans组和Chemo-POF组离体细胞中波形蛋白阳性的比例为85-86%,颗粒细胞为2-5%,OSCs小于3%。异种移植后,组织学研究证实存在形态健康的重建人类卵泡。此外,GDF9免疫荧光染色和激素测定证实AO上存在分泌活性卵泡。结论:在DCT上播种hocc形成的人工卵巢能够促进hocc的增殖和新卵发生,并促进异种移植后性激素的分泌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Engineering
Journal of Biological Engineering BIOCHEMICAL RESEARCH METHODS-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
7.10
自引率
1.80%
发文量
32
审稿时长
17 weeks
期刊介绍: Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to: Synthetic biology and cellular design Biomolecular, cellular and tissue engineering Bioproduction and metabolic engineering Biosensors Ecological and environmental engineering Biological engineering education and the biodesign process As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels. Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信