Exploitation of microbial activities at low pH to enhance planetary health.

IF 10.1 2区 生物学 Q1 MICROBIOLOGY
Merve Atasoy, Avelino Álvarez Ordóñez, Adam Cenian, Aleksandra Djukić-Vuković, Peter A Lund, Fatih Ozogul, Janja Trček, Carmit Ziv, Daniela De Biase
{"title":"Exploitation of microbial activities at low pH to enhance planetary health.","authors":"Merve Atasoy, Avelino Álvarez Ordóñez, Adam Cenian, Aleksandra Djukić-Vuković, Peter A Lund, Fatih Ozogul, Janja Trček, Carmit Ziv, Daniela De Biase","doi":"10.1093/femsre/fuad062","DOIUrl":null,"url":null,"abstract":"<p><p>Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963064/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuad062","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.

利用微生物在低pH下的活动来增强地球健康。
人们日益认识到,人类健康不能孤立地考虑,而是与我们生活的环境的健康密不可分。然而,人们没有认识到,人类活动的可持续性在很大程度上依赖于保持生活在我们体内/身上/周围的微生物群落的平衡。微生物代谢活动对食品的生产、功能化、加工和保存具有重要意义。对于循环经济,微生物代谢将被利用来为化学工业生产基础材料,以实现有效的作物保护、农业食品垃圾的再利用或生物燃料的生产,以及污染地区的生物修复和生物强化。低pH值无疑是开发强大的微生物代谢库需要考虑的关键物理化学参数。偏离最佳pH条件对形成负责执行基本过程的微生物群落具有深远的影响。此外,对抗病原体污染和感染的新策略依赖于微生物衍生的酸性分子来抑制/抑制它们的生长。在此,我们介绍了酸性pH值在许多应用领域影响的最新知识,以及这些知识如何指导我们利用微生物代谢活动的巨大武器库,从行星健康的角度对其进行更有效的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology reviews
FEMS microbiology reviews 生物-微生物学
CiteScore
17.50
自引率
0.90%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Title: FEMS Microbiology Reviews Journal Focus: Publishes reviews covering all aspects of microbiology not recently surveyed Reviews topics of current interest Provides comprehensive, critical, and authoritative coverage Offers new perspectives and critical, detailed discussions of significant trends May contain speculative and selective elements Aimed at both specialists and general readers Reviews should be framed within the context of general microbiology and biology Submission Criteria: Manuscripts should not be unevaluated compilations of literature Lectures delivered at symposia must review the related field to be acceptable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信