Microvesicle-eluting nano-engineered implants influence inflammatory response of keratinocytes.

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Drug Delivery and Translational Research Pub Date : 2024-12-01 Epub Date: 2023-11-20 DOI:10.1007/s13346-023-01457-x
Anjana Jayasree, Chun Liu, Carlos Salomon, Sašo Ivanovski, Karan Gulati, Pingping Han
{"title":"Microvesicle-eluting nano-engineered implants influence inflammatory response of keratinocytes.","authors":"Anjana Jayasree, Chun Liu, Carlos Salomon, Sašo Ivanovski, Karan Gulati, Pingping Han","doi":"10.1007/s13346-023-01457-x","DOIUrl":null,"url":null,"abstract":"<p><p>Besides enhancing osseo- and soft tissue integration, modulating inflammation at the implant site is also crucial for dental implant success. Uncontrolled peri-implant inflammation can cause significant loss of surrounding tissue and implant failure. It was recently shown that microvesicles (MVs), a less-studied type of extracellular vesicles, play a crucial role in cell-to-cell communication and may modulate angiogenesis and inflammatory response. The effect of MVs on regulating inflammation at an implant site, however, remains unexplored. In the current study, MVs were isolated and characterised from human primary gingival fibroblasts (hGFs) and loaded within titania nanotubes (TNTs, fabricated via anodisation on 3D Ti wire implants) towards their local release. The modified implants were characterised using SEM and confocal imaging to confirm the loading and local release of MVs from TNTs. In vitro studies demonstrated the internalisation of hGFs-MVs by human gingival keratinocytes (OKF6/TERT2 cell line), which caused a significant reduction in the production of pro-inflammatory cytokines. The results support MVs-releasing TNTs as a promising implant surface modification strategy to reduce inflammation, paving the way for further advancements in therapeutic dental implants.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"3371-3384"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-023-01457-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Besides enhancing osseo- and soft tissue integration, modulating inflammation at the implant site is also crucial for dental implant success. Uncontrolled peri-implant inflammation can cause significant loss of surrounding tissue and implant failure. It was recently shown that microvesicles (MVs), a less-studied type of extracellular vesicles, play a crucial role in cell-to-cell communication and may modulate angiogenesis and inflammatory response. The effect of MVs on regulating inflammation at an implant site, however, remains unexplored. In the current study, MVs were isolated and characterised from human primary gingival fibroblasts (hGFs) and loaded within titania nanotubes (TNTs, fabricated via anodisation on 3D Ti wire implants) towards their local release. The modified implants were characterised using SEM and confocal imaging to confirm the loading and local release of MVs from TNTs. In vitro studies demonstrated the internalisation of hGFs-MVs by human gingival keratinocytes (OKF6/TERT2 cell line), which caused a significant reduction in the production of pro-inflammatory cytokines. The results support MVs-releasing TNTs as a promising implant surface modification strategy to reduce inflammation, paving the way for further advancements in therapeutic dental implants.

Abstract Image

微泡洗脱纳米工程植入物影响角质形成细胞的炎症反应。
除了促进骨组织和软组织的整合外,调节种植体部位的炎症对种植体的成功也至关重要。不受控制的种植体周围炎症可引起明显的周围组织损失和种植体失败。最近的研究表明,微囊泡(MVs)是一种研究较少的细胞外囊泡类型,在细胞间通讯中起着至关重要的作用,并可能调节血管生成和炎症反应。然而,mv在调节植入部位炎症方面的作用仍未被研究。在目前的研究中,从人原发性牙龈成纤维细胞(hGFs)中分离并表征了mv,并将其加载到二氧化钛纳米管(通过阳极氧化在3D钛丝植入物上制备的tnt)中,以使其局部释放。利用扫描电镜和共聚焦成像对改良的植入物进行表征,以确认tnt的装载和局部释放mv。体外研究表明,人牙龈角质形成细胞(OKF6/TERT2细胞系)内化了hgfs - mv,导致促炎细胞因子的产生显著减少。结果支持释放mv的tnt作为一种有前途的种植体表面修饰策略来减少炎症,为治疗性种植体的进一步发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信