{"title":"Regeneration process of myotendinous junction injury induced by collagenase injection between Achilles tendon and soleus muscle in mice","authors":"Yutaro Yamamoto, Masahito Yamamoto, Hidetomo Hirouchi, Shuichiro Taniguchi, Genji Watanabe, Satoru Matsunaga, Shinichi Abe","doi":"10.1007/s12565-023-00748-0","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, it has become clear that peri-muscular tissues play a significant role in the deterioration of muscle function. Understanding the function and regeneration of muscle, as well as its surrounding tissues, is crucial to determining the causes of muscular illnesses. However, the regeneration process of the myotendinous junction (MTJ), the most closely related peri-muscular tissue, is still unknown. Therefore, we generated a mouse model of MTJ injury by collagenase injection and searched for the process of regeneration of the MTJ and its adjacent regions. The MTJ region was damaged by collagenase injection, which greatly increased the tendon cross sectional area. Collagenase injections increased the proportion of myofibers with a central nucleus, which is a characteristic of regenerating muscle. The collagenase injection group had myofibers with central nuclei and expressing MTJ markers. Additionally, we measured the length of MTJs using serial cross sections of the soleus muscle and discovered that MTJs at 2 weeks after collagenase injection were shorter compared to the control group, with a propensity to progressively recover their length over time. The results showed that MTJs undergo morphological regeneration even when severely damaged, and that this regeneration occurs in conjunction with muscle regeneration. We anticipate that these findings will be valuable in upcoming research on motor unit regeneration.</p></div>","PeriodicalId":7816,"journal":{"name":"Anatomical Science International","volume":"99 1","pages":"138 - 145"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Science International","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12565-023-00748-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, it has become clear that peri-muscular tissues play a significant role in the deterioration of muscle function. Understanding the function and regeneration of muscle, as well as its surrounding tissues, is crucial to determining the causes of muscular illnesses. However, the regeneration process of the myotendinous junction (MTJ), the most closely related peri-muscular tissue, is still unknown. Therefore, we generated a mouse model of MTJ injury by collagenase injection and searched for the process of regeneration of the MTJ and its adjacent regions. The MTJ region was damaged by collagenase injection, which greatly increased the tendon cross sectional area. Collagenase injections increased the proportion of myofibers with a central nucleus, which is a characteristic of regenerating muscle. The collagenase injection group had myofibers with central nuclei and expressing MTJ markers. Additionally, we measured the length of MTJs using serial cross sections of the soleus muscle and discovered that MTJs at 2 weeks after collagenase injection were shorter compared to the control group, with a propensity to progressively recover their length over time. The results showed that MTJs undergo morphological regeneration even when severely damaged, and that this regeneration occurs in conjunction with muscle regeneration. We anticipate that these findings will be valuable in upcoming research on motor unit regeneration.
期刊介绍:
The official English journal of the Japanese Association of Anatomists, Anatomical Science International (formerly titled Kaibogaku Zasshi) publishes original research articles dealing with morphological sciences.
Coverage in the journal includes molecular, cellular, histological and gross anatomical studies on humans and on normal and experimental animals, as well as functional morphological, biochemical, physiological and behavioral studies if they include morphological analysis.