Keunhoi Kim, Jongcheol Park, Kyoungmin Kim, TaeHyun Kim, SooHyun Kwon, Yeeun Na
{"title":"Plasma dicing before grinding process for highly reliable singulation of low-profile and large die sizes in advanced packages","authors":"Keunhoi Kim, Jongcheol Park, Kyoungmin Kim, TaeHyun Kim, SooHyun Kwon, Yeeun Na","doi":"10.1186/s40486-023-00183-w","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for advanced packaging is driven by the need for low-profile, densely-integrated, large-die Si devices in substrate-based or wafer-level packaging. Die strength is a critical parameter for ultrathin dies, making die singulation a vital aspect of advanced packaging technology. In this work, we present a dicing before grinding (DBG) process to compare and analyze die strengths using a mechanical blade, stealth laser, and plasma dicing. The three DBG processes were applied to a 200 mm silicon (Si) wafer process with a die size of 10 × 10 mm<sup>2</sup> and thicknesses of 100, 200, and 300 μm, respectively. Optical and electron microscopes were employed to investigate chipping quality, sidewall damage, and surface contamination. The bare Si die’s strength was assessed using a three-point bending test. Plasma dicing before grinding (PDBG) resulted in less contamination, chipping, and cracking compared to other DBG processes. Furthermore, PDBG exhibited the highest die strength of 1052 Pa.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"11 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00183-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-023-00183-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for advanced packaging is driven by the need for low-profile, densely-integrated, large-die Si devices in substrate-based or wafer-level packaging. Die strength is a critical parameter for ultrathin dies, making die singulation a vital aspect of advanced packaging technology. In this work, we present a dicing before grinding (DBG) process to compare and analyze die strengths using a mechanical blade, stealth laser, and plasma dicing. The three DBG processes were applied to a 200 mm silicon (Si) wafer process with a die size of 10 × 10 mm2 and thicknesses of 100, 200, and 300 μm, respectively. Optical and electron microscopes were employed to investigate chipping quality, sidewall damage, and surface contamination. The bare Si die’s strength was assessed using a three-point bending test. Plasma dicing before grinding (PDBG) resulted in less contamination, chipping, and cracking compared to other DBG processes. Furthermore, PDBG exhibited the highest die strength of 1052 Pa.