Instability of Gravitational and Electromagnetic Perturbations of Extremal Reissner–Nordström Spacetime

IF 2.4 1区 数学 Q1 MATHEMATICS
Marios Antonios Apetroaie
{"title":"Instability of Gravitational and Electromagnetic Perturbations of Extremal Reissner–Nordström Spacetime","authors":"Marios Antonios Apetroaie","doi":"10.1007/s40818-023-00158-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study the linear stability problem to gravitational and electromagnetic perturbations of the <i>extremal</i>, <span>\\( |Q|=M, \\)</span> Reissner–Nordström spacetime, as a solution to the Einstein–Maxwell equations. Our work uses and extends the framework [28, 32] of Giorgi, and contrary to the subextremal case we prove that instability results hold for a set of gauge invariant quantities along the event horizon <span>\\( {\\mathcal {H}}^+ \\)</span>. In particular, for associated quantities shown to satisfy generalized Regge–Wheeler equations we prove decay, non-decay, and polynomial blow-up estimates asymptotically along <span>\\( {\\mathcal {H}}^+ \\)</span>, the exact behavior depending on the number of translation invariant derivatives that we take. As a consequence, we show that for generic initial data, solutions to the generalized Teukolsky system of positive and negative spin satisfy both stability and instability results. It is worth mentioning that the negative spin solutions are significantly more unstable, with the extreme curvature component <span>\\( {\\underline{\\alpha }} \\)</span> not decaying asymptotically along the event horizon <span>\\( {\\mathcal {H}}^+, \\)</span> a result previously unknown in the literature.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"9 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-023-00158-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-023-00158-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the linear stability problem to gravitational and electromagnetic perturbations of the extremal, \( |Q|=M, \) Reissner–Nordström spacetime, as a solution to the Einstein–Maxwell equations. Our work uses and extends the framework [28, 32] of Giorgi, and contrary to the subextremal case we prove that instability results hold for a set of gauge invariant quantities along the event horizon \( {\mathcal {H}}^+ \). In particular, for associated quantities shown to satisfy generalized Regge–Wheeler equations we prove decay, non-decay, and polynomial blow-up estimates asymptotically along \( {\mathcal {H}}^+ \), the exact behavior depending on the number of translation invariant derivatives that we take. As a consequence, we show that for generic initial data, solutions to the generalized Teukolsky system of positive and negative spin satisfy both stability and instability results. It is worth mentioning that the negative spin solutions are significantly more unstable, with the extreme curvature component \( {\underline{\alpha }} \) not decaying asymptotically along the event horizon \( {\mathcal {H}}^+, \) a result previously unknown in the literature.

极端时空的引力和电磁扰动的不稳定性Reissner-Nordström
我们研究了引力和电磁扰动极值\( |Q|=M, \) Reissner-Nordström时空的线性稳定性问题,作为爱因斯坦-麦克斯韦方程组的解。我们的工作使用并扩展了Giorgi的框架[28,32],与次极值情况相反,我们证明了沿事件视界的一组规范不变量的不稳定性结果成立\( {\mathcal {H}}^+ \)。特别是,对于满足广义Regge-Wheeler方程的相关量,我们沿着\( {\mathcal {H}}^+ \)渐近地证明了衰减,非衰减和多项式爆破估计,其确切行为取决于我们取的平移不变导数的数量。结果表明,对于一般初始数据,具有正、负自旋的广义Teukolsky系统的解同时满足稳定性和不稳定性的结果。值得一提的是,负自旋解明显更不稳定,极端曲率分量\( {\underline{\alpha }} \)不会沿着事件视界渐近衰减\( {\mathcal {H}}^+, \),这是以前文献中未知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信