RETRACTED ARTICLE: A clustering approach for attack detection and data transmission in vehicular ad-hoc networks.

IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2023-11-18 DOI:10.1080/0954898X.2023.2279973
Atul Barve, Pushpinder Singh Patheja
{"title":"RETRACTED ARTICLE: A clustering approach for attack detection and data transmission in vehicular ad-hoc networks.","authors":"Atul Barve, Pushpinder Singh Patheja","doi":"10.1080/0954898X.2023.2279973","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"iii"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2279973","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
车辆自组织网络中攻击检测和数据传输的聚类方法。
车载自组织网络(vanet)在智能城市和智能交通系统的应用中发挥着越来越重要的作用。然而,VANET通信的可靠性和稳定性面临着巨大的障碍。Natura 2000 (N2k)是全球最大的保护区协调网络,因其以保护为中心的管理结构缺乏战略眼光而受到严重批评。本研究提出了一个三阶段策略来解决这些问题,旨在有效和可持续地管理N2K场地。该新方法采用dnn辅助典型相关分析(DNN-CCAS),包括簇形成、簇头选择和爆发识别,以增强VANET安全性。车辆聚类从一种改进的k -辅音方法开始,通过AKCEM聚类强调位置和速度。通过线性测量漫步方法选择簇头,然后使用DNN-CCAS将数据安全传输到云,如果簇头被认为是正常的。所提出的方法优于现有的技术,达到了令人印象深刻的91%的准确率。这一综合战略不仅解决了VANET的通信挑战,而且旨在通过将战略愿景纳入保护实践,彻底改变N2K遗址的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信