Camara L. Casson , Sofia A. John , Meghan C. Ferrall-Fairbanks
{"title":"Mathematical modeling of cardio-oncology: Modeling the systemic effects of cancer therapeutics on the cardiovascular system","authors":"Camara L. Casson , Sofia A. John , Meghan C. Ferrall-Fairbanks","doi":"10.1016/j.semcancer.2023.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiotoxicity is a common side-effect of many cancer therapeutics; however, to-date there has been very little push to understand the mechanisms underlying this group of pathologies. This has led to the emergence of cardio-oncology, a field of medicine focused on understanding the effects of cancer and its treatment on the human heart. Here, we describe how mechanistic modeling approaches have been applied to study open questions in the cardiovascular system and how these approaches are being increasingly applied to advance knowledge of the underlying effects of cancer treatments on the human heart. A variety of mechanistic, mathematical modeling techniques have been applied to explore the link between common cancer treatments, such as chemotherapy, radiation, targeted therapy, and immunotherapy, and cardiotoxicity, nevertheless there is limited coverage in the different types of cardiac dysfunction that may be associated with these treatments. Moreover, cardiac modeling has a rich heritage of mathematical modeling and is well suited for the further development of novel approaches for understanding the cardiotoxicities associated with cancer therapeutics. There are many opportunities to combine mechanistic, bottom-up approaches with data-driven, top-down approaches to improve personalized, precision oncology to better understand, and ultimately mitigate, cardiac dysfunction in cancer patients.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"97 ","pages":"Pages 30-41"},"PeriodicalIF":12.1000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1044579X23001438/pdfft?md5=93f6da9919c765701550a9f17dbddd8a&pid=1-s2.0-S1044579X23001438-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044579X23001438","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiotoxicity is a common side-effect of many cancer therapeutics; however, to-date there has been very little push to understand the mechanisms underlying this group of pathologies. This has led to the emergence of cardio-oncology, a field of medicine focused on understanding the effects of cancer and its treatment on the human heart. Here, we describe how mechanistic modeling approaches have been applied to study open questions in the cardiovascular system and how these approaches are being increasingly applied to advance knowledge of the underlying effects of cancer treatments on the human heart. A variety of mechanistic, mathematical modeling techniques have been applied to explore the link between common cancer treatments, such as chemotherapy, radiation, targeted therapy, and immunotherapy, and cardiotoxicity, nevertheless there is limited coverage in the different types of cardiac dysfunction that may be associated with these treatments. Moreover, cardiac modeling has a rich heritage of mathematical modeling and is well suited for the further development of novel approaches for understanding the cardiotoxicities associated with cancer therapeutics. There are many opportunities to combine mechanistic, bottom-up approaches with data-driven, top-down approaches to improve personalized, precision oncology to better understand, and ultimately mitigate, cardiac dysfunction in cancer patients.
期刊介绍:
Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field.
The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies.
To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area.
The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.