Transferrin functionalized poloxamer-chitosan nanoparticles of metformin: physicochemical characterization, in-vitro, and Ex-vivo studies.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2023-12-01 Epub Date: 2023-12-20 DOI:10.1080/03639045.2023.2282990
Swapnali Vasant Birajdar, Farhan Mazahir, Awesh K Yadav
{"title":"Transferrin functionalized poloxamer-chitosan nanoparticles of metformin: physicochemical characterization, <i>in-vitro,</i> and <i>Ex-vivo</i> studies.","authors":"Swapnali Vasant Birajdar, Farhan Mazahir, Awesh K Yadav","doi":"10.1080/03639045.2023.2282990","DOIUrl":null,"url":null,"abstract":"<p><strong>Object: </strong>We report the preparation, characterization, and <i>in-vitro</i> therapeutic evaluation of Metformin-Loaded, Transferrin-Poloxamer-Functionalized Chitosan Nanoparticles (TPMC-NPs) for their repurposing in Alzheimer's disease (AD).</p><p><strong>Significance: </strong>Usefulness of this work to establish the repurposing of metformin for the treatment of AD.</p><p><strong>Methods: </strong>The TPMC-NPs were prepared by ionic gelation method using sodium tripolyphosphate. The modification and functionalization were confirmed by FTIR and <sup>1</sup>H<sup>-</sup>NMR spectroscopy. The physicochemical characterization was performed using DLS, FTIR,<sup>1</sup>H-NMR, CD spectroscopy, SEM, DSC, PXRD, HR-TEM, and hot-stage microscopy.</p><p><strong>Results: </strong>The size, PDI, percent entrapment efficiency, and percent drug loading of TPMC-NPs were found to be 287.4 ± 9.5, 0.273 ± 0.067, 81.15 ± 7.17%, 11.75%±8.21%, respectively. Electron microscope analysis revealed smooth and spherical morphology. The transferrin conjugation efficiency was found to be 46% by the BCA method. <b>CD spectroscopy confirmed no significant</b> loss of the secondary structure of transferrin after conjugation. PXRD data indicated the amorphous nature of the TPMC-NPs. Hot-stage microscopy and DSC confirmed the thermal stability of TPMC-NPs. The <i>in-vitro</i> drug release showed a sustained release at pH 7.4. The DPPH assay displayed 80% antioxidant activity of TPMC-NPs in comparison with metformin and blank NPs. The <i>in-vitro</i> cytotoxicity assay revealed 69.60% viable SH- SY5Y cells at 100 µg/mL of TPMC NPs. The <i>ex-vivo</i> nasal ciliotoxicity and mucoadhesion studies showed no significant toxicity, and 98.16% adhesion, respectively. The nasal permeability study showed the release of metformin within 30 min from TPMC-NPs.</p><p><strong>Conclusion: </strong>The obtained results suggested the usefulness of TPMC-NPs in the treatment of AD <i>via</i> the intranasal route.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2023.2282990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Object: We report the preparation, characterization, and in-vitro therapeutic evaluation of Metformin-Loaded, Transferrin-Poloxamer-Functionalized Chitosan Nanoparticles (TPMC-NPs) for their repurposing in Alzheimer's disease (AD).

Significance: Usefulness of this work to establish the repurposing of metformin for the treatment of AD.

Methods: The TPMC-NPs were prepared by ionic gelation method using sodium tripolyphosphate. The modification and functionalization were confirmed by FTIR and 1H-NMR spectroscopy. The physicochemical characterization was performed using DLS, FTIR,1H-NMR, CD spectroscopy, SEM, DSC, PXRD, HR-TEM, and hot-stage microscopy.

Results: The size, PDI, percent entrapment efficiency, and percent drug loading of TPMC-NPs were found to be 287.4 ± 9.5, 0.273 ± 0.067, 81.15 ± 7.17%, 11.75%±8.21%, respectively. Electron microscope analysis revealed smooth and spherical morphology. The transferrin conjugation efficiency was found to be 46% by the BCA method. CD spectroscopy confirmed no significant loss of the secondary structure of transferrin after conjugation. PXRD data indicated the amorphous nature of the TPMC-NPs. Hot-stage microscopy and DSC confirmed the thermal stability of TPMC-NPs. The in-vitro drug release showed a sustained release at pH 7.4. The DPPH assay displayed 80% antioxidant activity of TPMC-NPs in comparison with metformin and blank NPs. The in-vitro cytotoxicity assay revealed 69.60% viable SH- SY5Y cells at 100 µg/mL of TPMC NPs. The ex-vivo nasal ciliotoxicity and mucoadhesion studies showed no significant toxicity, and 98.16% adhesion, respectively. The nasal permeability study showed the release of metformin within 30 min from TPMC-NPs.

Conclusion: The obtained results suggested the usefulness of TPMC-NPs in the treatment of AD via the intranasal route.

转铁蛋白功能化的poloxmer -壳聚糖纳米二甲双胍:理化表征,体外和离体研究。
目的:报道二甲双胍负载、转铁蛋白-波洛莫功能化壳聚糖纳米颗粒(TPMC-NPs)的制备、表征和体外治疗评价,并将其用于阿尔茨海默病(AD)的治疗。意义:本研究有助于确立二甲双胍治疗AD的重新用途。方法:采用三聚磷酸钠离子凝胶法制备TPMC-NPs。通过FTIR和1H-NMR证实了改性和功能化。采用DLS、FTIR、1H-NMR、CD谱、SEM、DSC、PXRD、HR-TEM和热级显微镜进行了理化表征。结果:TPMC-NPs的体积、PDI、包封率、载药量分别为287.4±9.5、0.273±0.067、81.15±7.17%、11.75%±8.21%。电镜分析显示其表面光滑,呈球形。BCA法发现转铁蛋白的结合效率为46%。CD光谱证实,偶联后转铁蛋白二级结构无明显损失。PXRD数据表明了TPMC-NPs的无定形性质。热级显微镜和DSC证实了TPMC-NPs的热稳定性。体外释药在pH为7.4时缓释。与二甲双胍和空白NPs相比,DPPH实验显示TPMC-NPs的抗氧化活性为80%。体外细胞毒性试验显示,在100µg/mL TPMC NPs下,SH- SY5Y细胞存活率为69.60%。离体鼻纤毛毒性和黏附性研究均显示无明显毒性,黏附性分别为98.16%。鼻腔渗透性研究显示,TPMC-NPs在30分钟内释放二甲双胍。结论:TPMC-NPs在经鼻给药治疗AD中有一定的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信