Molecular mechanism of calcitriol enhances membrane water permeability

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zanxia Cao, Liling Zhao, Mingcui Chen, Zhihong Shi, Lei Liu
{"title":"Molecular mechanism of calcitriol enhances membrane water permeability","authors":"Zanxia Cao,&nbsp;Liling Zhao,&nbsp;Mingcui Chen,&nbsp;Zhihong Shi,&nbsp;Lei Liu","doi":"10.1016/j.bbalip.2023.159430","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>Helicobacter pylori</em></span> (<em>H. pylori</em><span>) exhibits a unique membrane lipid<span> composition, including dimyristoyl phosphatidylethanolamine<span><span> (DMPE) and cholesterol, unlike other Gram-negative bacteria. Calcitriol has </span>antimicrobial activity against </span></span></span><em>H. pylori</em><span>, but cholesterol enhances antibiotics resistance in </span><em>H. pylori</em><span><span>. This study explored the changes in membrane structure and the molecular mechanisms of cholesterol/calcitriol translocation using well-tempered </span>metadynamics<span><span><span> (WT-MetaD) simulations and microsecond conventional molecular dynamics (CMD) simulations. Calcitriol facilitated water transport across the membrane, while cholesterol had the opposite effect. The differing effects might result from the tail 25-hydroxyl group and a wider range of orientations of calcitriol in the DMPE/dimyristoyl phosphatidylglycerol (DMPG) (3:1) membrane. Calcitriol moves across the </span>bilayer<span> center without changing its orientation along the membrane Z-axis, becomes parallel to the membrane surface at the membrane-water interface, and then rotates approximately 90° in this interface. The translocation mechanism of calcitriol is quite different from the flip-flop of cholesterol. Moreover, calcitriol crossed from one layer to another more easily than cholesterol, causing successive perturbations to the hydrophobic core and increasing water permeation. These results improve our understanding of the relationship between cholesterol/calcitriol concentrations and the lipid bilayer structure and the role of </span></span>lipid composition in water permeation.</span></span></p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198123001543","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Helicobacter pylori (H. pylori) exhibits a unique membrane lipid composition, including dimyristoyl phosphatidylethanolamine (DMPE) and cholesterol, unlike other Gram-negative bacteria. Calcitriol has antimicrobial activity against H. pylori, but cholesterol enhances antibiotics resistance in H. pylori. This study explored the changes in membrane structure and the molecular mechanisms of cholesterol/calcitriol translocation using well-tempered metadynamics (WT-MetaD) simulations and microsecond conventional molecular dynamics (CMD) simulations. Calcitriol facilitated water transport across the membrane, while cholesterol had the opposite effect. The differing effects might result from the tail 25-hydroxyl group and a wider range of orientations of calcitriol in the DMPE/dimyristoyl phosphatidylglycerol (DMPG) (3:1) membrane. Calcitriol moves across the bilayer center without changing its orientation along the membrane Z-axis, becomes parallel to the membrane surface at the membrane-water interface, and then rotates approximately 90° in this interface. The translocation mechanism of calcitriol is quite different from the flip-flop of cholesterol. Moreover, calcitriol crossed from one layer to another more easily than cholesterol, causing successive perturbations to the hydrophobic core and increasing water permeation. These results improve our understanding of the relationship between cholesterol/calcitriol concentrations and the lipid bilayer structure and the role of lipid composition in water permeation.

Abstract Image

骨化三醇增强膜透水性的分子机理。
与其他革兰氏阴性菌不同,幽门螺杆菌具有独特的膜脂组成,包括二肉豆蔻酰基磷脂酰乙醇胺(DMPE)和胆固醇。骨化三醇对幽门螺杆菌具有抗菌活性,而胆固醇可增强幽门螺杆菌的耐药性。本研究利用well-tempered metaddynamics (WT-MetaD)模拟和微秒常规分子动力学(CMD)模拟,探讨了胆固醇/骨化三醇易位的膜结构变化和分子机制。骨化三醇促进了水在细胞膜上的运输,而胆固醇则起到相反的作用。这种不同的效应可能是由于DMPE/二肉豆蔻酰磷脂酰甘油(DMPG)(3:1)膜中骨化三醇的尾部25羟基和更大的取向范围。骨化三醇沿膜z轴沿双分子层中心移动而不改变方向,在膜-水界面处与膜表面平行,然后在膜-水界面处旋转约90°。骨化三醇的易位机制与胆固醇的翻转有很大的不同。此外,骨化三醇比胆固醇更容易从一层穿越到另一层,对疏水核心造成连续的扰动,增加了水的渗透性。这些结果提高了我们对胆固醇/骨化三醇浓度与脂质双分子层结构之间的关系以及脂质组成在水渗透中的作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
2.10%
发文量
109
审稿时长
53 days
期刊介绍: BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信