Morgane Couchet, Hui Gao, Felix Klingelhuber, Jutta Jalkanen, Thais De Castro Barbosa, Muhmmad Omar-Hmeadi, Lucas Massier, Natalie Krahmer, Niklas Mejhert, Mikael Rydén
{"title":"Adipogenic characterization of immortalized CD55<sup>+</sup> progenitor cells from human white adipose tissue.","authors":"Morgane Couchet, Hui Gao, Felix Klingelhuber, Jutta Jalkanen, Thais De Castro Barbosa, Muhmmad Omar-Hmeadi, Lucas Massier, Natalie Krahmer, Niklas Mejhert, Mikael Rydén","doi":"10.1080/21623945.2023.2283213","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mature adipocytes are difficult to study ex vivo, prompting the use of human adipose progenitor cells (hAPCs). However, hAPCs undergo replicative senescence, limiting their utility in long-term studies.</p><p><strong>Methods: </strong>We inserted human telomerase reverse transcriptase (TERT) into the AAVS1 locus of CD55+ hAPCs derived from abdominal subcutaneous adipose tissue, and characterized the cells before and after adipogenic differentiation.</p><p><strong>Results: </strong>TERT-hAPCs retained proliferative and adipogenic capacities for over 80 passages, comparable to early-passage wild type hAPCs. Transcriptomic and proteomic analyses confirmed strong adipocyte gene expression. Functionally, TERT-hAPCs responded to insulin and lipolytic stimuli (isoprenaline, dibutyryl cAMP, TNF-α). They adapted well to both 2D and 3D cultures, with improved adipogenesis under spheroid conditions.</p><p><strong>Conclusion: </strong>Immortalization of CD55+ hAPCs yields cells with stable proliferative and adipogenic capacity across passages. Being cryopreservable and suitable for both 2D and 3D cultures, TERT-hAPCs offer a reliable, reusable model system for adipocyte studies using cells with a consistent genetic background.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"2283213"},"PeriodicalIF":3.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2023.2283213","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mature adipocytes are difficult to study ex vivo, prompting the use of human adipose progenitor cells (hAPCs). However, hAPCs undergo replicative senescence, limiting their utility in long-term studies.
Methods: We inserted human telomerase reverse transcriptase (TERT) into the AAVS1 locus of CD55+ hAPCs derived from abdominal subcutaneous adipose tissue, and characterized the cells before and after adipogenic differentiation.
Results: TERT-hAPCs retained proliferative and adipogenic capacities for over 80 passages, comparable to early-passage wild type hAPCs. Transcriptomic and proteomic analyses confirmed strong adipocyte gene expression. Functionally, TERT-hAPCs responded to insulin and lipolytic stimuli (isoprenaline, dibutyryl cAMP, TNF-α). They adapted well to both 2D and 3D cultures, with improved adipogenesis under spheroid conditions.
Conclusion: Immortalization of CD55+ hAPCs yields cells with stable proliferative and adipogenic capacity across passages. Being cryopreservable and suitable for both 2D and 3D cultures, TERT-hAPCs offer a reliable, reusable model system for adipocyte studies using cells with a consistent genetic background.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.