ChemPlot, a Python Library for Chemical Space Visualization**

IF 6.1 Q1 CHEMISTRY, MULTIDISCIPLINARY
Murat Cihan Sorkun, Dajt Mullaj, J. M. Vianney A. Koelman, Süleyman Er
{"title":"ChemPlot, a Python Library for Chemical Space Visualization**","authors":"Murat Cihan Sorkun,&nbsp;Dajt Mullaj,&nbsp;J. M. Vianney A. Koelman,&nbsp;Süleyman Er","doi":"10.1002/cmtd.202200005","DOIUrl":null,"url":null,"abstract":"<p>Visualizing chemical spaces streamlines the analysis of molecular datasets by reducing the information to human perception level, hence it forms an integral piece of molecular engineering, including chemical library design, high-throughput screening, diversity analysis, and outlier detection. We present here ChemPlot, which enables users to visualize the chemical space of molecular datasets in both static and interactive ways. ChemPlot features structural and tailored similarity methods, together with three different dimensionality reduction methods: PCA, t-SNE, and UMAP. ChemPlot is the first visualization software that tackles the activity/property cliff problem by incorporating tailored similarity. With tailored similarity, the chemical space is constructed in a supervised manner considering target properties. Additionally, we propose a metric, the Distance Property Relationship score, to quantify the property difference of similar (i. e. close) molecules in the visualized chemical space. ChemPlot can be installed via Conda or PyPI (pip) and a web application is freely accessible at https://www.amdlab.nl/chemplot/.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Visualizing chemical spaces streamlines the analysis of molecular datasets by reducing the information to human perception level, hence it forms an integral piece of molecular engineering, including chemical library design, high-throughput screening, diversity analysis, and outlier detection. We present here ChemPlot, which enables users to visualize the chemical space of molecular datasets in both static and interactive ways. ChemPlot features structural and tailored similarity methods, together with three different dimensionality reduction methods: PCA, t-SNE, and UMAP. ChemPlot is the first visualization software that tackles the activity/property cliff problem by incorporating tailored similarity. With tailored similarity, the chemical space is constructed in a supervised manner considering target properties. Additionally, we propose a metric, the Distance Property Relationship score, to quantify the property difference of similar (i. e. close) molecules in the visualized chemical space. ChemPlot can be installed via Conda or PyPI (pip) and a web application is freely accessible at https://www.amdlab.nl/chemplot/.

Abstract Image

chempt,一个用于化学空间可视化的Python库**
可视化化学空间通过将信息降低到人类感知水平来简化分子数据集的分析,因此它形成了分子工程的一个组成部分,包括化学文库设计,高通量筛选,多样性分析和离群值检测。我们在这里介绍ChemPlot,它使用户能够以静态和交互式的方式可视化分子数据集的化学空间。ChemPlot具有结构化和定制化的相似度方法,以及三种不同的降维方法:PCA、t-SNE和UMAP。chempt是第一个通过结合定制相似性来解决活动/属性悬崖问题的可视化软件。利用定制的相似度,考虑目标的性质,以监督的方式构建化学空间。此外,我们提出了一个度量,距离属性关系得分,以量化相似的属性差异(即。在可视化的化学空间中紧密的分子。chempt可以通过Conda或PyPI (pip)安装,并且可以在https://www.amdlab.nl/chemplot/免费访问web应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信