Computerized classification method for histological classification of masses on breast ultrasonographic images using convolutional neural networks with ROI pooling
IF 0.5 4区 工程技术Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Computerized classification method for histological classification of masses on breast ultrasonographic images using convolutional neural networks with ROI pooling","authors":"Akiyoshi Hizukuri, Shinya Kunieda, Ryohei Nakayama","doi":"10.1002/ecj.12368","DOIUrl":null,"url":null,"abstract":"<p>It can be difficult for clinicians to correctly determine histological classifications of masses on breast ultrasonographic images. The purpose of this study was to develop a computerized classification method for histological classification of masses on breast ultrasonographic images using convolutional neural networks (CNN) with a ROI pooling that analyzes feature maps focusing on the mass region. Our dataset consisted of 585 breast ultrasonographic images obtained from 585 patients. It included 288 malignant masses (218 invasive and 70 noninvasive carcinomas) and 297 benign masses (115 cysts and 182 fibroadenomas). In this study, we developed a modified CNN model based on ResNet-18, in which the ROI pooling and two fully connected layers with a softmax function were introduced after the second and fourth residual block on ResNet-18, respectively. The proposed CNN model was employed to distinguish among four different types of histological classifications for masses. A three-fold cross validation method was used for training and testing the proposed CNN model. The average accuracy, sensitivity, specificity, positive predictive value and negative predictive value for the proposed CNN model were 81.7%, 91.0%, 91.2%, 91.0%, and 91.2%, respectively. Those results were substantially greater than those with ResNet-18 (70.3%, 83.0%, 87.2%, 86.3%, and 84.1%).</p>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"105 3","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12368","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
It can be difficult for clinicians to correctly determine histological classifications of masses on breast ultrasonographic images. The purpose of this study was to develop a computerized classification method for histological classification of masses on breast ultrasonographic images using convolutional neural networks (CNN) with a ROI pooling that analyzes feature maps focusing on the mass region. Our dataset consisted of 585 breast ultrasonographic images obtained from 585 patients. It included 288 malignant masses (218 invasive and 70 noninvasive carcinomas) and 297 benign masses (115 cysts and 182 fibroadenomas). In this study, we developed a modified CNN model based on ResNet-18, in which the ROI pooling and two fully connected layers with a softmax function were introduced after the second and fourth residual block on ResNet-18, respectively. The proposed CNN model was employed to distinguish among four different types of histological classifications for masses. A three-fold cross validation method was used for training and testing the proposed CNN model. The average accuracy, sensitivity, specificity, positive predictive value and negative predictive value for the proposed CNN model were 81.7%, 91.0%, 91.2%, 91.0%, and 91.2%, respectively. Those results were substantially greater than those with ResNet-18 (70.3%, 83.0%, 87.2%, 86.3%, and 84.1%).
期刊介绍:
Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields:
- Electronic theory and circuits,
- Control theory,
- Communications,
- Cryptography,
- Biomedical fields,
- Surveillance,
- Robotics,
- Sensors and actuators,
- Micromachines,
- Image analysis and signal analysis,
- New materials.
For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).