{"title":"Cellular polarity in cultured animal pole cells of Xenopus embryos","authors":"Mari Asada-Kubota","doi":"10.1016/0889-1605(89)90021-9","DOIUrl":null,"url":null,"abstract":"<div><p>The expression of intracellular and surface polarity in cultured animal pole cells of <em>Xenopus</em> embryos (stages 6, 8, and 10) was examined morphologically and immunocytochemically. When control embryos reached stage 23, daughter cells derived from a single or a few animal pole cells formed aggregates. Outer cells of the aggregates displayed intracellular and surface polarity and expressed an epidermis-specific antigen (XEPI-1) on the apical surface circumference, while these characteristics had not yet been established in the animal pole cells at the time of isolation. However, inner cells of the aggregates did not display the cellular polarity along an outer-inner axis of the aggregates and displayed the antigen randomly within the aggregates. These results indicate that the expression of cellular polarity in epidermal differentiation of <em>Xenopus</em> embryos <em>in vitro</em> depends on the position within the aggregates formed by daughter cells derived from isolated animal pole cells.</p></div>","PeriodicalId":77743,"journal":{"name":"Journal of ultrastructure and molecular structure research","volume":"102 3","pages":"Pages 265-275"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0889-1605(89)90021-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ultrastructure and molecular structure research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0889160589900219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The expression of intracellular and surface polarity in cultured animal pole cells of Xenopus embryos (stages 6, 8, and 10) was examined morphologically and immunocytochemically. When control embryos reached stage 23, daughter cells derived from a single or a few animal pole cells formed aggregates. Outer cells of the aggregates displayed intracellular and surface polarity and expressed an epidermis-specific antigen (XEPI-1) on the apical surface circumference, while these characteristics had not yet been established in the animal pole cells at the time of isolation. However, inner cells of the aggregates did not display the cellular polarity along an outer-inner axis of the aggregates and displayed the antigen randomly within the aggregates. These results indicate that the expression of cellular polarity in epidermal differentiation of Xenopus embryos in vitro depends on the position within the aggregates formed by daughter cells derived from isolated animal pole cells.