Anion-Trap Engineering toward Remarkable Crystallographic Reorientation and Efficient Cation Migration of Zn Ion Batteries

Meijia Qiu, Dr. Peng Sun, Dr. Yu Wang, Dr. Liang Ma, Prof. Chunyi Zhi, Prof. Wenjie Mai
{"title":"Anion-Trap Engineering toward Remarkable Crystallographic Reorientation and Efficient Cation Migration of Zn Ion Batteries","authors":"Meijia Qiu,&nbsp;Dr. Peng Sun,&nbsp;Dr. Yu Wang,&nbsp;Dr. Liang Ma,&nbsp;Prof. Chunyi Zhi,&nbsp;Prof. Wenjie Mai","doi":"10.1002/ange.202210979","DOIUrl":null,"url":null,"abstract":"<p>Zn batteries are considered as potential candidates in future power sources, however suffer problems of rampant dendrite/by-product on Zn anodes, torpid Zn<sup>2+</sup> transfer/diffusion and poor energy density. Inspired by the host-guest interaction chemistry, an anion-trap agent β-cyclodextrin (β-CD) is introduced into the Zn(ClO<sub>4</sub>)<sub>2</sub> electrolyte to induce dominant Zn (002) deposition and improve Zn<sup>2+</sup> migration behaviors. The anion ClO<sub>4</sub><sup>−</sup> is revealed to be trapped inside the cavity of β-CD, impairing barriers for Zn<sup>2+</sup> migration and significantly elevating the Zn<sup>2+</sup> transference number to 0.878. Meanwhile, the β-CD@ClO<sub>4</sub><sup>−</sup> complex shows the function in preferential growth of the Zn (002), blocking the approach of dendrite growth. Above combined functions lead to substantial enhancement in long-term stability and cell capacity, as proved by 10 times longer life of Zn||Zn symmetric cells and 57 % capacity increasement of Zn-MnO<sub>2</sub> full cells (at 0.1 A g<sup>−1</sup>) compared with that of pure Zn(ClO<sub>4</sub>)<sub>2</sub> electrolyte.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"134 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202210979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Zn batteries are considered as potential candidates in future power sources, however suffer problems of rampant dendrite/by-product on Zn anodes, torpid Zn2+ transfer/diffusion and poor energy density. Inspired by the host-guest interaction chemistry, an anion-trap agent β-cyclodextrin (β-CD) is introduced into the Zn(ClO4)2 electrolyte to induce dominant Zn (002) deposition and improve Zn2+ migration behaviors. The anion ClO4 is revealed to be trapped inside the cavity of β-CD, impairing barriers for Zn2+ migration and significantly elevating the Zn2+ transference number to 0.878. Meanwhile, the β-CD@ClO4 complex shows the function in preferential growth of the Zn (002), blocking the approach of dendrite growth. Above combined functions lead to substantial enhancement in long-term stability and cell capacity, as proved by 10 times longer life of Zn||Zn symmetric cells and 57 % capacity increasement of Zn-MnO2 full cells (at 0.1 A g−1) compared with that of pure Zn(ClO4)2 electrolyte.

Abstract Image

阴离子阱工程对锌离子电池晶体重定向和高效阳离子迁移的影响
锌电池被认为是未来电源的潜在候选人,但存在锌阳极上枝晶/副产物猖獗、Zn2+转移/扩散缓慢、能量密度低等问题。受主客体相互作用化学的启发,在Zn(ClO4)2电解质中引入阴离子诱捕剂β-环糊精(β-CD),诱导Zn(002)的显性沉积,改善Zn2+的迁移行为。阴离子ClO4−被困在β-CD的腔内,破坏了Zn2+迁移的屏障,使Zn2+迁移数显著提高至0.878。同时,β-CD@ClO4−络合物显示出Zn(002)优先生长的功能,阻断了枝晶生长的途径。与纯Zn(ClO4)2电解质相比,Zn||Zn对称电池的寿命延长了10倍,Zn- mno2充满电池(0.1 A g−1)的容量增加了57%,上述综合功能大大提高了电池的长期稳定性和容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信