Human dense avoidance based on a coverage control through robots

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Shu Morita, Yuki Okura, Chiaki Kojima
{"title":"Human dense avoidance based on a coverage control through robots","authors":"Shu Morita,&nbsp;Yuki Okura,&nbsp;Chiaki Kojima","doi":"10.1002/ecj.12383","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose an efficient method for human dense avoidance based on a coverage control. Our motivation is to avoid crowding in public facilities such as stations and government offices, and human dense in the current situation of COVID-19 from system and control theory. In this paper, humans and robots are modeled as heterogeneous and homogeneous agents, respectively, which make decisions based on their local information. We suppose a dense situation caused by the rendezvous among humans due to their own inherent dynamics. As a main result, we propose a coverage control for a distributed movement of multiple humans. We also characterize the stationary point analytically in terms of the gains that describe a strength of the interconnection of the agents, and the centers of the Voronoi regions related to the agents. Moreover, we verify the meaning of the characterization from an engineering viewpoint of the dense avoidance. Finally, we show the efficiency of the method based on a numerical simulation.</p>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"105 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12383","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an efficient method for human dense avoidance based on a coverage control. Our motivation is to avoid crowding in public facilities such as stations and government offices, and human dense in the current situation of COVID-19 from system and control theory. In this paper, humans and robots are modeled as heterogeneous and homogeneous agents, respectively, which make decisions based on their local information. We suppose a dense situation caused by the rendezvous among humans due to their own inherent dynamics. As a main result, we propose a coverage control for a distributed movement of multiple humans. We also characterize the stationary point analytically in terms of the gains that describe a strength of the interconnection of the agents, and the centers of the Voronoi regions related to the agents. Moreover, we verify the meaning of the characterization from an engineering viewpoint of the dense avoidance. Finally, we show the efficiency of the method based on a numerical simulation.

基于机器人覆盖控制的人类密集躲避
在本文中,我们提出了一种有效的基于覆盖控制的人类密集躲避方法。我们的动机是从制度和控制理论出发,在新冠疫情的当前情况下,避免车站、政府机关等公共设施拥挤,避免人员密集。在本文中,人类和机器人分别被建模为异质和同质智能体,它们根据自身的局部信息做出决策。我们假设由于人类自身的内在动力,人类之间的交会造成了密集的情况。作为主要结果,我们提出了一种针对多人分布式运动的覆盖控制。我们还根据描述代理互连强度的增益,以及与代理相关的Voronoi区域的中心,分析地表征了驻点。此外,我们从工程的角度验证了密集回避表征的意义。最后,通过数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronics and Communications in Japan
Electronics and Communications in Japan 工程技术-工程:电子与电气
CiteScore
0.60
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields: - Electronic theory and circuits, - Control theory, - Communications, - Cryptography, - Biomedical fields, - Surveillance, - Robotics, - Sensors and actuators, - Micromachines, - Image analysis and signal analysis, - New materials. For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信