Liang-Liang Feng , Dong-Ming Li , Qian-Qian Liu , Chang-Le Fu , Hong-Yan Yin , Li Feng , Yu-Hang Li , Hui Chen , Xiao-Xin Zou
{"title":"Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution","authors":"Liang-Liang Feng , Dong-Ming Li , Qian-Qian Liu , Chang-Le Fu , Hong-Yan Yin , Li Feng , Yu-Hang Li , Hui Chen , Xiao-Xin Zou","doi":"10.1016/j.asems.2022.100027","DOIUrl":null,"url":null,"abstract":"<div><p>Interface engineering is deemed as an effective approach to optimize the electronic structure of catalytically active sites in electrocatalysts for boosted hydrogen evolution reaction (HER). Herein, a novel ultrasmall VN/Co heterostructure anchored in N-doped graphitized nanocarbons (VN/Co@GNC) is successfully synthesized by a simple calcination protocol. Benefiting from the abundant reactive sites on the interface of ultrasmall heterostructure, enhanced N active sites of VN coupled with Co nanoparticles, as well as excellent conductivity of N-doped graphitized nanocarbons as the scaffold, the resulting VN/Co@GNC material exhibits outstanding electrocatalytic HER performance, delivering the current density of 10 mA/cm<sup>2</sup> at a quite low overpotential of 155 mV without <em>iR</em>-compensation, and retaining the catalytic durability for at least 565 h (∼23.5 days) in 1 M KOH solution. The superior catalytic activity and ultrastability of VN/Co@GNC electrocatalyst lay a solid foundation for its commercial applications toward the hydrogen fuel production.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 3","pages":"Article 100027"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000279/pdfft?md5=488bd9f55c8265c4b0e2c14b52ebedd9&pid=1-s2.0-S2773045X22000279-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X22000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Interface engineering is deemed as an effective approach to optimize the electronic structure of catalytically active sites in electrocatalysts for boosted hydrogen evolution reaction (HER). Herein, a novel ultrasmall VN/Co heterostructure anchored in N-doped graphitized nanocarbons (VN/Co@GNC) is successfully synthesized by a simple calcination protocol. Benefiting from the abundant reactive sites on the interface of ultrasmall heterostructure, enhanced N active sites of VN coupled with Co nanoparticles, as well as excellent conductivity of N-doped graphitized nanocarbons as the scaffold, the resulting VN/Co@GNC material exhibits outstanding electrocatalytic HER performance, delivering the current density of 10 mA/cm2 at a quite low overpotential of 155 mV without iR-compensation, and retaining the catalytic durability for at least 565 h (∼23.5 days) in 1 M KOH solution. The superior catalytic activity and ultrastability of VN/Co@GNC electrocatalyst lay a solid foundation for its commercial applications toward the hydrogen fuel production.