How to incorporate temporal change in digital business research: The use of process theory and agent-based modeling

Horst Treiblmaier
{"title":"How to incorporate temporal change in digital business research: The use of process theory and agent-based modeling","authors":"Horst Treiblmaier","doi":"10.1016/j.digbus.2022.100049","DOIUrl":null,"url":null,"abstract":"<div><p>Research on digital businesses builds upon a well-established set of theories, models, and frameworks. A frequently used approach within the paradigm of common variance theory is to first create a theory-based model and then test it using a multivariate method. Cross-sectional data is often used to test the overall fit of the model and the significance of its parameters, yet this approach fails to take into account the important role of temporal dynamics and the potential change of parameters over time, which constitutes an important research gap. For example, the popular Technology Acceptance Model (TAM) provides a snapshot in time, but cannot explain the postulated temporal patterns of the Diffusion of Innovations (DOI) theory. In this exploratory paper, we call for a theoretical and methodological paradigm shift and introduce process theory as a complement to the popular variance theory. This theory considers how entities change over time and create important network effects. Additionally, we illustrate how agent-based modeling (ABM) in combination with Structural Equation Modeling (SEM) can help to create models that combine the rigor of multivariate statistical methods with the capability of process theory to account for changes over time. Using ABM within the process theory paradigm can help to create meaningful models that are capable of incorporating temporal dynamics.</p></div>","PeriodicalId":100376,"journal":{"name":"Digital Business","volume":"2 2","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666954422000291/pdfft?md5=c1bd47fec61b8da5ec5c8c19423f9894&pid=1-s2.0-S2666954422000291-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Business","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666954422000291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research on digital businesses builds upon a well-established set of theories, models, and frameworks. A frequently used approach within the paradigm of common variance theory is to first create a theory-based model and then test it using a multivariate method. Cross-sectional data is often used to test the overall fit of the model and the significance of its parameters, yet this approach fails to take into account the important role of temporal dynamics and the potential change of parameters over time, which constitutes an important research gap. For example, the popular Technology Acceptance Model (TAM) provides a snapshot in time, but cannot explain the postulated temporal patterns of the Diffusion of Innovations (DOI) theory. In this exploratory paper, we call for a theoretical and methodological paradigm shift and introduce process theory as a complement to the popular variance theory. This theory considers how entities change over time and create important network effects. Additionally, we illustrate how agent-based modeling (ABM) in combination with Structural Equation Modeling (SEM) can help to create models that combine the rigor of multivariate statistical methods with the capability of process theory to account for changes over time. Using ABM within the process theory paradigm can help to create meaningful models that are capable of incorporating temporal dynamics.

如何将时间变化纳入数字商业研究:使用过程理论和基于代理的建模
对数字业务的研究建立在一套完善的理论、模型和框架之上。在共同方差理论的范式中,经常使用的方法是首先创建一个基于理论的模型,然后使用多变量方法对其进行测试。通常使用截面数据来检验模型的整体拟合和参数的显著性,但这种方法没有考虑到时间动力学的重要作用和参数随时间的潜在变化,这是一个重要的研究空白。例如,流行的技术接受模型(TAM)提供了一个时间快照,但不能解释创新扩散(DOI)理论的假定时间模式。在这篇探索性的论文中,我们呼吁理论和方法范式的转变,并引入过程理论作为流行的方差理论的补充。该理论考虑实体如何随时间变化并产生重要的网络效应。此外,我们还说明了基于主体的建模(ABM)与结构方程建模(SEM)相结合如何帮助创建将多元统计方法的严谨性与过程理论的能力相结合的模型,以解释随时间的变化。在过程理论范式中使用ABM可以帮助创建能够结合时间动态的有意义的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信