Eun-Jeong Cha , Se Hwan Yang , Yu Sun Hyun , Chang-Hoi Ho , Il-Ju Moon
{"title":"Recent progress on the seasonal tropical cyclone predictions over the western North Pacific from 2014 to 2020","authors":"Eun-Jeong Cha , Se Hwan Yang , Yu Sun Hyun , Chang-Hoi Ho , Il-Ju Moon","doi":"10.1016/j.tcrr.2022.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>This study summarized the procedure for the seasonal predictions of tropical cyclones (TCs) over the western North Pacific (WNP), which is currently operating at the Korea Meteorological Administration (KMA), Republic of Korea. The methodology was briefly described, and its prediction accuracy was verified. Seasonal predictions were produced by synthesizing spatiotemporal evolutions of various climate factors such as El Niño–Southern Oscillation (ENSO), monsoon activity, and Madden–Julian Oscillation (MJO), using four models: a statistical, a dynamical, and two statistical–dynamical models. The KMA forecaster predicted the number of TCs over the WNP based on the results of the four models and season to season climate variations. The seasonal prediction of TCs is announced through the press twice a year, for the summer on May and fall on August. The present results showed low accuracy during the period 2014–2020. To advance forecast skill, a set of recommendations are suggested.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"11 1","pages":"Pages 26-35"},"PeriodicalIF":2.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2225603222000029/pdfft?md5=87e32f610b7f7b352fc1471f705b494e&pid=1-s2.0-S2225603222000029-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603222000029","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study summarized the procedure for the seasonal predictions of tropical cyclones (TCs) over the western North Pacific (WNP), which is currently operating at the Korea Meteorological Administration (KMA), Republic of Korea. The methodology was briefly described, and its prediction accuracy was verified. Seasonal predictions were produced by synthesizing spatiotemporal evolutions of various climate factors such as El Niño–Southern Oscillation (ENSO), monsoon activity, and Madden–Julian Oscillation (MJO), using four models: a statistical, a dynamical, and two statistical–dynamical models. The KMA forecaster predicted the number of TCs over the WNP based on the results of the four models and season to season climate variations. The seasonal prediction of TCs is announced through the press twice a year, for the summer on May and fall on August. The present results showed low accuracy during the period 2014–2020. To advance forecast skill, a set of recommendations are suggested.
期刊介绍:
Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome.
Scope of the journal includes:
• Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies
• Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings
• Basic theoretical studies of tropical cyclones
• Event reports, compelling images, and topic review reports of tropical cyclones
• Impacts, risk assessments, and risk management techniques related to tropical cyclones