Changes in body shape implicate cuticle stretch in C. elegans growth control

IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
Joy Nyaanga , Christina Goss , Gaotian Zhang , Hannah N. Ahmed , Elliot J. Andersen , Isabella R. Miller , Justine K. Rozenich , Iris L. Swarthout , Jordan A. Vaughn , Niall M. Mangan , Sasha Shirman , Erik C. Andersen
{"title":"Changes in body shape implicate cuticle stretch in C. elegans growth control","authors":"Joy Nyaanga ,&nbsp;Christina Goss ,&nbsp;Gaotian Zhang ,&nbsp;Hannah N. Ahmed ,&nbsp;Elliot J. Andersen ,&nbsp;Isabella R. Miller ,&nbsp;Justine K. Rozenich ,&nbsp;Iris L. Swarthout ,&nbsp;Jordan A. Vaughn ,&nbsp;Niall M. Mangan ,&nbsp;Sasha Shirman ,&nbsp;Erik C. Andersen","doi":"10.1016/j.cdev.2022.203780","DOIUrl":null,"url":null,"abstract":"<div><p>Growth control establishes organism size, requiring mechanisms to sense and adjust growth during development. Studies of single cells revealed that size homeostasis uses distinct control methods. In multicellular organisms, mechanisms that regulate single cell growth must integrate control across organs and tissues during development to generate adult size and shape. We leveraged the roundworm <em>Caenorhabditis elegans</em> as a scalable and tractable model to collect precise growth measurements of thousands of individuals, measure feeding behavior, and quantify changes in animal size and shape during a densely sampled developmental time course. As animals transitioned from one developmental stage to the next, we observed changes in body aspect ratio while body volume remained constant. Then, we modeled a physical mechanism by which constraints on cuticle stretch could cause changes in <em>C. elegans</em> body shape. The model-predicted shape changes are consistent with those observed in the data. Theoretically, cuticle stretch could be sensed by the animal to initiate larval-stage transitions, providing a means for physical constraints to influence developmental timing and growth rate in <em>C. elegans</em>.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266729012200016X/pdfft?md5=cea8c83ef61a18b7619fff6675b01cd0&pid=1-s2.0-S266729012200016X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266729012200016X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Growth control establishes organism size, requiring mechanisms to sense and adjust growth during development. Studies of single cells revealed that size homeostasis uses distinct control methods. In multicellular organisms, mechanisms that regulate single cell growth must integrate control across organs and tissues during development to generate adult size and shape. We leveraged the roundworm Caenorhabditis elegans as a scalable and tractable model to collect precise growth measurements of thousands of individuals, measure feeding behavior, and quantify changes in animal size and shape during a densely sampled developmental time course. As animals transitioned from one developmental stage to the next, we observed changes in body aspect ratio while body volume remained constant. Then, we modeled a physical mechanism by which constraints on cuticle stretch could cause changes in C. elegans body shape. The model-predicted shape changes are consistent with those observed in the data. Theoretically, cuticle stretch could be sensed by the animal to initiate larval-stage transitions, providing a means for physical constraints to influence developmental timing and growth rate in C. elegans.

秀丽隐杆线虫生长控制中身体形状的变化与角质层伸展有关
生长控制建立了生物体的大小,需要在发育过程中感知和调节生长的机制。对单细胞的研究表明,大小的内稳态使用不同的控制方法。在多细胞生物中,调节单细胞生长的机制必须在发育过程中整合跨器官和组织的控制,以产生成人的大小和形状。我们利用秀丽隐杆线虫(Caenorhabditis elegans)作为可扩展和易于处理的模型,收集数千个个体的精确生长测量数据,测量摄食行为,并在密集采样的发育时间过程中量化动物大小和形状的变化。当动物从一个发育阶段过渡到下一个发育阶段时,我们观察到身体长宽比的变化,而身体体积保持不变。然后,我们模拟了一种物理机制,通过这种机制,角质层拉伸的限制可能导致秀丽隐杆线虫体型的变化。模型预测的形状变化与观测到的数据一致。从理论上讲,角质层的拉伸可以被动物感知来启动幼虫期的转变,为线虫的发育时间和生长速度提供了一种物理约束手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cells and Development
Cells and Development Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
2.90
自引率
0.00%
发文量
33
审稿时长
41 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信