Gottlieb groups of spheres

Topology Pub Date : 2008-11-01 DOI:10.1016/j.top.2007.11.001
Marek Golasiński , Juno Mukai
{"title":"Gottlieb groups of spheres","authors":"Marek Golasiński ,&nbsp;Juno Mukai","doi":"10.1016/j.top.2007.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper takes up the systematic study of the Gottlieb groups <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></math></span> of spheres for <span><math><mi>k</mi><mo>≤</mo><mn>13</mn></math></span> by means of the classical homotopy theory methods. We fully determine the groups <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></math></span> for <span><math><mi>k</mi><mo>≤</mo><mn>13</mn></math></span> except for the 2-primary components in the cases: <span><math><mi>k</mi><mo>=</mo><mn>9</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>53</mn><mo>;</mo><mi>k</mi><mo>=</mo><mn>11</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>115</mn></math></span>. In particular, we show <span><math><mrow><mo>[</mo><msub><mrow><mi>ι</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msubsup><mrow><mi>η</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>]</mo></mrow><mo>=</mo><mn>0</mn></math></span> if <span><math><mi>n</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>i</mi></mrow></msup><mo>−</mo><mn>7</mn></math></span> for <span><math><mi>i</mi><mo>≥</mo><mn>4</mn></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 6","pages":"Pages 399-430"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.11.001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper takes up the systematic study of the Gottlieb groups Gn+k(Sn) of spheres for k13 by means of the classical homotopy theory methods. We fully determine the groups Gn+k(Sn) for k13 except for the 2-primary components in the cases: k=9,n=53;k=11,n=115. In particular, we show [ιn,ηn2σn+2]=0 if n=2i7 for i4.

戈特利布球群
本文用经典同伦理论方法系统地研究了k≤13的球的Gottlieb群Gn+k(Sn)。除了k=9,n=53;k=11,n=115的情况下,我们完全确定了k≤13的群Gn+k(Sn)。特别地,当i≥4时n=2i−7,则表明[ιn,ηn2σn+2]=0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信