Yuanwang Lan , Yidan Luo , Shuohan Yu , Huiyin Ye , Yingshuai Zhang , Mingshan Xue , Qing Sun , Zuozhu Yin , Xibao Li , Chan Xie , Zhen Hong , Bin Gao
{"title":"Cornstalk hydrochar produced by phosphoric acid-assisted hydrothermal carbonization for effective adsorption and photodegradation of norfloxacin","authors":"Yuanwang Lan , Yidan Luo , Shuohan Yu , Huiyin Ye , Yingshuai Zhang , Mingshan Xue , Qing Sun , Zuozhu Yin , Xibao Li , Chan Xie , Zhen Hong , Bin Gao","doi":"10.1016/j.seppur.2023.125543","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrochars have been widely applied in removing pollutants from aqueous solutions. In this study, hydrochars synthesized by H<sub>3</sub>PO<sub>4</sub>-assisted hydrothermal carbonization (HC-xPs) were used to remove norfloxacin (NOR) from water through synergistic adsorption and photodegradation. HC-xPs showed the morphology of carbon microspheres with an average diameter of 0.3 μm. The specific surface area of the hydrochar carbonized with 5 mol/L H<sub>3</sub>PO<sub>4</sub> (HC-5P) was 11.2 times higher than that of the pristine hydrochar (HC). Furthermore, phosphorus-containing functional groups were introduced to HC-5P, beneficial to its adsorption of NOR. The highest NOR adsorption was achieved on HC-5P with the maximum Langmuir capacity of 69.1 mg g<sup>−1</sup><span>, owing to multiple mechanisms including electrostatic effects, π-π interactions, hydrophobic interactions, and hydrogen bonding. Compared with HC, HC-5P also demonstrated increased visible light absorption capacity. The first-order rate constant of HC-5P on combined adsorption and photodegradation of NOR was 12.0 times of HC. The photodegradation intermediates were identified by HPLC-MS to understand NOR degradation pathways. This work can be extended to the preparation of low-cost and highly efficient hydrochars for adsorption and photodegradation of pollutants in water.</span></p></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"330 ","pages":"Article 125543"},"PeriodicalIF":9.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586623024516","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrochars have been widely applied in removing pollutants from aqueous solutions. In this study, hydrochars synthesized by H3PO4-assisted hydrothermal carbonization (HC-xPs) were used to remove norfloxacin (NOR) from water through synergistic adsorption and photodegradation. HC-xPs showed the morphology of carbon microspheres with an average diameter of 0.3 μm. The specific surface area of the hydrochar carbonized with 5 mol/L H3PO4 (HC-5P) was 11.2 times higher than that of the pristine hydrochar (HC). Furthermore, phosphorus-containing functional groups were introduced to HC-5P, beneficial to its adsorption of NOR. The highest NOR adsorption was achieved on HC-5P with the maximum Langmuir capacity of 69.1 mg g−1, owing to multiple mechanisms including electrostatic effects, π-π interactions, hydrophobic interactions, and hydrogen bonding. Compared with HC, HC-5P also demonstrated increased visible light absorption capacity. The first-order rate constant of HC-5P on combined adsorption and photodegradation of NOR was 12.0 times of HC. The photodegradation intermediates were identified by HPLC-MS to understand NOR degradation pathways. This work can be extended to the preparation of low-cost and highly efficient hydrochars for adsorption and photodegradation of pollutants in water.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.