Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents

IF 3.4 2区 管理学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hao Teng , Nan Wang , Hongyu Zhao , Yingtong Hu , Haitao Jin
{"title":"Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents","authors":"Hao Teng ,&nbsp;Nan Wang ,&nbsp;Hongyu Zhao ,&nbsp;Yingtong Hu ,&nbsp;Haitao Jin","doi":"10.1016/j.joi.2023.101467","DOIUrl":null,"url":null,"abstract":"<div><p>The semantic text similarity (STS) estimation between patents is a critical issue for the patent portfolio analysis. Current methods such as keywords, co-word analysis and even the Subject-Action-Object (SAO) algorithms, are not quite reasonable for the patent similarity calculation due to the lack of fine-grained semantic knowledge, “property-parameter” features and flexible “functional or non-functional” combinations. In the meanwhile, standardized similarity datasets are also unavailable. In this paper, we have proposed a new kind of functional semantic knowledge (Function-Object-Property, i.e., FOP) instead of SAO triples, which can contribute directly to enhance the patent similarity. Moreover, patent STS datasets, including the matching dataset and the ranking dataset, have firstly been processed and released as benchmarks for the comparative evaluation. Preliminary results have demonstrated that FOP-based methods are more appropriate in the STS tasks incorporated with IPC codes, weights’ assignments and patent pre-trained vectors. To be further, the deep interaction-based models with the averaged FOP embeddings are recommended to be one of the most optimal choices of effectively improving the semantic learning capability. Finally, a new patent similarity calculation framework is summarized and successfully applied in the patent retrieval, which highlight that the proposed methodology serves as a dominant power in diverse patented STS tasks.</p></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1751157723000925/pdfft?md5=551d512f2e57638cdd7c6a3d8f0ef05d&pid=1-s2.0-S1751157723000925-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157723000925","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The semantic text similarity (STS) estimation between patents is a critical issue for the patent portfolio analysis. Current methods such as keywords, co-word analysis and even the Subject-Action-Object (SAO) algorithms, are not quite reasonable for the patent similarity calculation due to the lack of fine-grained semantic knowledge, “property-parameter” features and flexible “functional or non-functional” combinations. In the meanwhile, standardized similarity datasets are also unavailable. In this paper, we have proposed a new kind of functional semantic knowledge (Function-Object-Property, i.e., FOP) instead of SAO triples, which can contribute directly to enhance the patent similarity. Moreover, patent STS datasets, including the matching dataset and the ranking dataset, have firstly been processed and released as benchmarks for the comparative evaluation. Preliminary results have demonstrated that FOP-based methods are more appropriate in the STS tasks incorporated with IPC codes, weights’ assignments and patent pre-trained vectors. To be further, the deep interaction-based models with the averaged FOP embeddings are recommended to be one of the most optimal choices of effectively improving the semantic learning capability. Finally, a new patent similarity calculation framework is summarized and successfully applied in the patent retrieval, which highlight that the proposed methodology serves as a dominant power in diverse patented STS tasks.

利用功能语义知识(FOP)增强专利中的语义文本相似度
专利间的语义文本相似度估计是专利组合分析中的一个关键问题。由于缺乏细粒度的语义知识、“属性-参数”特征和灵活的“功能或非功能”组合,现有的关键词、共词分析甚至主体-动作-对象(SAO)算法等方法对于专利相似度计算都不太合理。同时,标准化的相似度数据集也缺乏。本文提出了一种新的功能语义知识(Function-Object-Property,即FOP)来代替SAO三元组,可以直接提高专利相似度。并首先处理并发布专利STS数据集,包括匹配数据集和排名数据集,作为比较评价的基准。初步结果表明,基于fop的方法更适用于包含IPC代码、权值分配和专利预训练向量的STS任务。此外,基于深度交互的平均FOP嵌入模型是有效提高语义学习能力的最佳选择之一。最后,总结了一种新的专利相似度计算框架,并将其成功应用于专利检索中,结果表明该方法在多种专利STS任务中具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Informetrics
Journal of Informetrics Social Sciences-Library and Information Sciences
CiteScore
6.40
自引率
16.20%
发文量
95
期刊介绍: Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信