Coupling an artificial receptor with macrophage membrane for targeted and synergistic treatment of cholestasis

Qiaoxian Huang , Zong-Ying Hu , Shuwen Guo , Dong-Sheng Guo , Ruibing Wang
{"title":"Coupling an artificial receptor with macrophage membrane for targeted and synergistic treatment of cholestasis","authors":"Qiaoxian Huang ,&nbsp;Zong-Ying Hu ,&nbsp;Shuwen Guo ,&nbsp;Dong-Sheng Guo ,&nbsp;Ruibing Wang","doi":"10.1016/j.supmat.2022.100020","DOIUrl":null,"url":null,"abstract":"<div><p>Cholestasis is defined as an impairment of bile acid flow leading to intrahepatic retention of toxic bile acids (BAs), which induce apoptosis or necrosis of hepatocytes and liver inflammation. Ursodeoxycholic acid (UDCA), a FDA-approved drug to treat cholestasis, has limited therapeutic effects due to its poor specificity. Herein, we report a targeted therapeutic platform (namely, MAP) based upon co-assembly of macrophage membrane and amphiphilic calix[4]arene on PLGA nanoparticles. With UDCA loaded into calix[4]arene on the surface, MAP exhibited long-term stability, excellent biocompatibility, prolonged retention in the inflammatory liver due to the homing effects of macrophage membrane, and effective therapy of cholestasis via the specific action of UDCA and efficient sequestration of toxic BAs and inflammatory cytokines by the artificial receptor and membrane receptors, respectively. This study not only provides an artificial receptor coupled macrophage-mimetic nanomedicine platform to conquer cholestasis but also offers new insights into the design of improved versions of biomimetic nanomaterials that harness the power of both the natural and artificial receptors.</p></div>","PeriodicalId":101187,"journal":{"name":"Supramolecular Materials","volume":"1 ","pages":"Article 100020"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667240522000137/pdfft?md5=da3a127feffbb44045e9d5d520988faf&pid=1-s2.0-S2667240522000137-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supramolecular Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667240522000137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cholestasis is defined as an impairment of bile acid flow leading to intrahepatic retention of toxic bile acids (BAs), which induce apoptosis or necrosis of hepatocytes and liver inflammation. Ursodeoxycholic acid (UDCA), a FDA-approved drug to treat cholestasis, has limited therapeutic effects due to its poor specificity. Herein, we report a targeted therapeutic platform (namely, MAP) based upon co-assembly of macrophage membrane and amphiphilic calix[4]arene on PLGA nanoparticles. With UDCA loaded into calix[4]arene on the surface, MAP exhibited long-term stability, excellent biocompatibility, prolonged retention in the inflammatory liver due to the homing effects of macrophage membrane, and effective therapy of cholestasis via the specific action of UDCA and efficient sequestration of toxic BAs and inflammatory cytokines by the artificial receptor and membrane receptors, respectively. This study not only provides an artificial receptor coupled macrophage-mimetic nanomedicine platform to conquer cholestasis but also offers new insights into the design of improved versions of biomimetic nanomaterials that harness the power of both the natural and artificial receptors.

Abstract Image

巨噬细胞膜偶联人工受体靶向和协同治疗胆汁淤积症
胆汁淤积被定义为胆汁酸流动障碍,导致有毒胆汁酸(BAs)在肝内滞留,从而诱导肝细胞凋亡或坏死和肝脏炎症。熊去氧胆酸(UDCA)是fda批准的治疗胆汁淤积症的药物,由于其特异性较差,治疗效果有限。在此,我们报道了一种基于巨噬细胞膜和两亲杯[4]芳烃在PLGA纳米颗粒上共组装的靶向治疗平台(即MAP)。由于UDCA装载在杯[4]芳烃表面,MAP具有长期稳定性和良好的生物相容性,由于巨噬细胞膜的归巢作用,MAP在炎性肝脏中可以长时间滞留,并且通过UDCA的特异性作用有效治疗胆汁淤积,通过人工受体和膜受体分别有效隔离有毒的BAs和炎性细胞因子。这项研究不仅提供了一个人工受体偶联的巨噬细胞模拟纳米药物平台来克服胆汁淤积,而且还为设计改进版本的仿生纳米材料提供了新的见解,这些仿生纳米材料可以利用天然和人工受体的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信