Junqiang Dai, Nathan A Jorgensen, Natasha Duell, Jimmy Capella, Maria T Maza, Seh-Joo Kwon, Mitchell J Prinstein, Kristen A Lindquist, Eva H Telzer
{"title":"Neural tracking of social hierarchies in adolescents' real-world social networks.","authors":"Junqiang Dai, Nathan A Jorgensen, Natasha Duell, Jimmy Capella, Maria T Maza, Seh-Joo Kwon, Mitchell J Prinstein, Kristen A Lindquist, Eva H Telzer","doi":"10.1093/scan/nsad064","DOIUrl":null,"url":null,"abstract":"<p><p>In the current study, we combined sociometric nominations and neuroimaging techniques to examine adolescents' neural tracking of peers from their real-world social network that varied in social preferences and popularity. Adolescent participants from an entire school district (N = 873) completed peer sociometric nominations of their grade at school, and a subset of participants (N = 117, Mage = 13.59 years) completed a neuroimaging task in which they viewed peer faces from their social networks. We revealed two neural processes by which adolescents track social preference: (1) the fusiform face area, an important region for early visual perception and social categorization, simultaneously represented both peers high in social preference and low in social preference; (2) the dorsolateral prefrontal cortex (DLPFC), which was differentially engaged in tracking peers high and low in social preference. No regions specifically tracked peers high in popularity and only the inferior parietal lobe, temporoparietal junction, midcingulate cortex and insula were involved in tracking unpopular peers. This is the first study to examine the neural circuits that support adolescents' perception of peer-based social networks. These findings identify the neural processes that allow youths to spontaneously keep track of peers' social value within their social network.</p>","PeriodicalId":94208,"journal":{"name":"Social cognitive and affective neuroscience","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social cognitive and affective neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/scan/nsad064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the current study, we combined sociometric nominations and neuroimaging techniques to examine adolescents' neural tracking of peers from their real-world social network that varied in social preferences and popularity. Adolescent participants from an entire school district (N = 873) completed peer sociometric nominations of their grade at school, and a subset of participants (N = 117, Mage = 13.59 years) completed a neuroimaging task in which they viewed peer faces from their social networks. We revealed two neural processes by which adolescents track social preference: (1) the fusiform face area, an important region for early visual perception and social categorization, simultaneously represented both peers high in social preference and low in social preference; (2) the dorsolateral prefrontal cortex (DLPFC), which was differentially engaged in tracking peers high and low in social preference. No regions specifically tracked peers high in popularity and only the inferior parietal lobe, temporoparietal junction, midcingulate cortex and insula were involved in tracking unpopular peers. This is the first study to examine the neural circuits that support adolescents' perception of peer-based social networks. These findings identify the neural processes that allow youths to spontaneously keep track of peers' social value within their social network.