{"title":"Long- and Short-Term Memory Model of Cotton Price Index Volatility Risk Based on Explainable Artificial Intelligence.","authors":"Huosong Xia, Xiaoyu Hou, Justin Zuopeng Zhang","doi":"10.1089/big.2022.0287","DOIUrl":null,"url":null,"abstract":"<p><p>Market uncertainty greatly interferes with the decisions and plans of market participants, thus increasing the risk of decision-making, leading to compromised interests of decision-makers. Cotton price index (hereinafter referred to as cotton price) volatility is highly noisy, nonlinear, and stochastic and is susceptible to supply and demand, climate, substitutes, and other policy factors, which are subject to large uncertainties. To reduce decision risk and provide decision support for policymakers, this article integrates 13 factors affecting cotton price index volatility based on existing research and further divides them into transaction data and interaction data. A long- and short-term memory (LSTM) model is constructed, and a comparison experiment is implemented to analyze the cotton price index volatility. To make the constructed model explainable, we use explainable artificial intelligence (XAI) techniques to perform statistical analysis of the input features. The experimental results show that the LSTM model can accurately analyze the cotton price index fluctuation trend but cannot accurately predict the actual price of cotton; the transaction data plus interaction data are more sensitive than the transaction data in analyzing the cotton price fluctuation trend and can have a positive effect on the cotton price fluctuation analysis. This study can accurately reflect the fluctuation trend of the cotton market, provide reference to the state, enterprises, and cotton farmers for decision-making, and reduce the risk caused by frequent fluctuation of cotton prices. The analysis of the model using XAI techniques builds the confidence of decision-makers in the model.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Market uncertainty greatly interferes with the decisions and plans of market participants, thus increasing the risk of decision-making, leading to compromised interests of decision-makers. Cotton price index (hereinafter referred to as cotton price) volatility is highly noisy, nonlinear, and stochastic and is susceptible to supply and demand, climate, substitutes, and other policy factors, which are subject to large uncertainties. To reduce decision risk and provide decision support for policymakers, this article integrates 13 factors affecting cotton price index volatility based on existing research and further divides them into transaction data and interaction data. A long- and short-term memory (LSTM) model is constructed, and a comparison experiment is implemented to analyze the cotton price index volatility. To make the constructed model explainable, we use explainable artificial intelligence (XAI) techniques to perform statistical analysis of the input features. The experimental results show that the LSTM model can accurately analyze the cotton price index fluctuation trend but cannot accurately predict the actual price of cotton; the transaction data plus interaction data are more sensitive than the transaction data in analyzing the cotton price fluctuation trend and can have a positive effect on the cotton price fluctuation analysis. This study can accurately reflect the fluctuation trend of the cotton market, provide reference to the state, enterprises, and cotton farmers for decision-making, and reduce the risk caused by frequent fluctuation of cotton prices. The analysis of the model using XAI techniques builds the confidence of decision-makers in the model.