Functional Diversification and the Plant Secondary Cell Wall.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Molecular Evolution Pub Date : 2023-12-01 Epub Date: 2023-11-18 DOI:10.1007/s00239-023-10145-w
Joseph B Colbert, Heather D Coleman
{"title":"Functional Diversification and the Plant Secondary Cell Wall.","authors":"Joseph B Colbert, Heather D Coleman","doi":"10.1007/s00239-023-10145-w","DOIUrl":null,"url":null,"abstract":"<p><p>Much evidence exists suggesting the presence of genetic functional diversification in plants, though literature associated with the role of functional diversification in the evolution of the plant secondary cell wall (SCW) has sparsely been compiled and reviewed in a recent context. This review aims to elucidate, through the examination of gene phylogenies associated with its biosynthesis and maintenance, the role of functional diversification in shaping the critical, dynamic, and characteristic organelle, the secondary cell wall. It will be asserted that gene families resulting from gene duplication and subsequent functional divergence are present and are heavily involved in SCW biosynthesis and maintenance. Furthermore, diversification will be presented as a significant driver behind the evolution of the many functional characteristics of the SCW. The structure and function of the plant cell wall and its constituents will first be explored, followed by a discussion on the phenomenon of gene duplication and the resulting genetic functional divergence that can emerge. Finally, the major constituents of the SCW and their individual relationships with duplication and divergence will be reviewed to the extent of current knowledge on the subject.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-023-10145-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Much evidence exists suggesting the presence of genetic functional diversification in plants, though literature associated with the role of functional diversification in the evolution of the plant secondary cell wall (SCW) has sparsely been compiled and reviewed in a recent context. This review aims to elucidate, through the examination of gene phylogenies associated with its biosynthesis and maintenance, the role of functional diversification in shaping the critical, dynamic, and characteristic organelle, the secondary cell wall. It will be asserted that gene families resulting from gene duplication and subsequent functional divergence are present and are heavily involved in SCW biosynthesis and maintenance. Furthermore, diversification will be presented as a significant driver behind the evolution of the many functional characteristics of the SCW. The structure and function of the plant cell wall and its constituents will first be explored, followed by a discussion on the phenomenon of gene duplication and the resulting genetic functional divergence that can emerge. Finally, the major constituents of the SCW and their individual relationships with duplication and divergence will be reviewed to the extent of current knowledge on the subject.

功能多样化与植物次生细胞壁。
尽管功能多样化在植物次生细胞壁(SCW)进化中的作用的相关文献在最近的背景下很少被编译和审查,但许多证据表明植物中存在遗传功能多样化。本文旨在通过对其生物合成和维持相关的基因系统发育的研究,阐明功能多样化在形成关键的、动态的和具有特征的细胞器——次生细胞壁中的作用。我们将断言,由基因复制和随后的功能分化产生的基因家族是存在的,并且在很大程度上参与了SCW的生物合成和维持。此外,多样化将被认为是海洋生物多样性许多功能特征演变背后的重要驱动力。首先探讨植物细胞壁及其成分的结构和功能,然后讨论基因复制现象以及由此产生的遗传功能分化。最后,我们将根据目前对这一主题的了解,回顾SCW的主要组成部分及其与重复和分歧的个别关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信