Evaluation of Stem Cell Laden Collagen + Polycaprolactone + Multi-Walled Carbon Nano-Tubes Nano-Neural Scaffold with and Without Insulin Like Growth Factor-I For Sciatic Nerve Regeneration Post Crush Injury in Wistar Rats.
{"title":"Evaluation of Stem Cell Laden Collagen + Polycaprolactone + Multi-Walled Carbon Nano-Tubes Nano-Neural Scaffold with and Without Insulin Like Growth Factor-I For Sciatic Nerve Regeneration Post Crush Injury in Wistar Rats.","authors":"Mamta Mishra, Swapan Kumar Maiti, Kalaiselvan Elangovan, Shivaraju Shivaramu, Karam Pal Singh, Amitha Banu S, Merlin Mamachan, Manish Arya, Divya Mishra, Jurgen Hescheler","doi":"10.33594/000000670","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>All body functions are activated, synchronized and controlled by a substantial, complex network, the nervous system. Upon injury, pathophysiology of the nerve injury proceeds through different paths. The axon may undergo a degenerative retraction from the site of injury for a short distance unless the injury is near to the cell body, in which case it continues to the soma and undergoes retrograde neuronal degeneration. Otherwise, the distal section suffers from Wallerian degeneration, which is marked by axonal swelling, spheroids, and cytoskeleton degeneration. The objective of the study was to evaluate the potential of mesenchymal stem cell laden neural scaffold and insulin-like growth factor I (IGF-I) in nerve regeneration following sciatic nerve injury in a rat model.</p><p><strong>Methods: </strong>The animals were anaesthetized and a cranio-lateral incision over left thigh was made. Sciatic nerve was exposed and crush injury was introduced for 90 seconds using haemostat at second locking position. The muscle and skin were sutured in routine fashion and thus the rat model of sciatic crush injury was prepared. The animal models were equally distributed into 5 different groups namely A, B, C, D and E and treated with phosphate buffer saline (PBS), carbon nanotubes based neural scaffold only, scaffold with IGF-I, stem cell laden scaffold and stem cell laden scaffold with IGF-I respectively. In vitro scaffold testing was performed. The nerve regeneration was assessed based on physico-neuronal, biochemical, histopathological examination, and relative expression of NRP-1, NRP-2 and GAP-43 and scanning electron microscopy.</p><p><strong>Results: </strong>Sciatic nerve injury model with crush injury produced for 90 seconds was standardized and successfully used in this study. All the biochemical parameters were in normal range in all the groups indicating no scaffold related changes. Physico-neuronal, histopathological, relative gene expression and scanning electron microscopy observations revealed appreciable nerve regeneration in groups E and D, followed by C and B. Restricted to no regeneration was observed in group A.</p><p><strong>Conclusion: </strong>Carbon nanotubes based scaffold provided electro-conductivity for proper neuronal regeneration while rat bone marrow-derived mesenchymal stem cells were found to induce axonal sprouting, cellular transformation; whereas IGF-I induced stem cell differentiation, myelin synthesis, angiogenesis and muscle differentiation.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aims: All body functions are activated, synchronized and controlled by a substantial, complex network, the nervous system. Upon injury, pathophysiology of the nerve injury proceeds through different paths. The axon may undergo a degenerative retraction from the site of injury for a short distance unless the injury is near to the cell body, in which case it continues to the soma and undergoes retrograde neuronal degeneration. Otherwise, the distal section suffers from Wallerian degeneration, which is marked by axonal swelling, spheroids, and cytoskeleton degeneration. The objective of the study was to evaluate the potential of mesenchymal stem cell laden neural scaffold and insulin-like growth factor I (IGF-I) in nerve regeneration following sciatic nerve injury in a rat model.
Methods: The animals were anaesthetized and a cranio-lateral incision over left thigh was made. Sciatic nerve was exposed and crush injury was introduced for 90 seconds using haemostat at second locking position. The muscle and skin were sutured in routine fashion and thus the rat model of sciatic crush injury was prepared. The animal models were equally distributed into 5 different groups namely A, B, C, D and E and treated with phosphate buffer saline (PBS), carbon nanotubes based neural scaffold only, scaffold with IGF-I, stem cell laden scaffold and stem cell laden scaffold with IGF-I respectively. In vitro scaffold testing was performed. The nerve regeneration was assessed based on physico-neuronal, biochemical, histopathological examination, and relative expression of NRP-1, NRP-2 and GAP-43 and scanning electron microscopy.
Results: Sciatic nerve injury model with crush injury produced for 90 seconds was standardized and successfully used in this study. All the biochemical parameters were in normal range in all the groups indicating no scaffold related changes. Physico-neuronal, histopathological, relative gene expression and scanning electron microscopy observations revealed appreciable nerve regeneration in groups E and D, followed by C and B. Restricted to no regeneration was observed in group A.
Conclusion: Carbon nanotubes based scaffold provided electro-conductivity for proper neuronal regeneration while rat bone marrow-derived mesenchymal stem cells were found to induce axonal sprouting, cellular transformation; whereas IGF-I induced stem cell differentiation, myelin synthesis, angiogenesis and muscle differentiation.
期刊介绍:
Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.