High-speed 2D beam steering with Large Field of View based on Thin-Film Lithium Niobate Optical Phased Array

IF 6.6 1区 物理与天体物理 Q1 OPTICS
Wenlei Li, Xu Zhao, Jianghao He, Hao Yan, Bingcheng Pan, Zichen Guo, Xiang E Han, Jingye Chen, Daoxin Dai, Yaocheng Shi
{"title":"High-speed 2D beam steering with Large Field of View based on Thin-Film Lithium Niobate Optical Phased Array","authors":"Wenlei Li, Xu Zhao, Jianghao He, Hao Yan, Bingcheng Pan, Zichen Guo, Xiang E Han, Jingye Chen, Daoxin Dai, Yaocheng Shi","doi":"10.1364/prj.502439","DOIUrl":null,"url":null,"abstract":"An on-chip optical phased array (OPA) is considered as a promising solution for next generation solid-state beam steering. However, most of the reported OPAs suffer from low operating bandwidths, making them limited in many applications. We propose and demonstrate a high-speed 2D scanning OPA based on thin-film lithium niobate phase modulators with traveling-wave electrodes. The measured modulation bandwidth is up to 2.5 GHz. Moreover, an aperiodic array combined with a slab grating antenna is also used to suppress the grating lobes of far-field beams, which enables a large field of view (FOV) as well as small beam width. A 16-channel OPA demonstrates an FOV of 50°×8.6° and a beam width of 0.73°×2.8° in the phase tuning direction and the wavelength scanning direction, respectively.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"49 3","pages":"0"},"PeriodicalIF":6.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/prj.502439","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

An on-chip optical phased array (OPA) is considered as a promising solution for next generation solid-state beam steering. However, most of the reported OPAs suffer from low operating bandwidths, making them limited in many applications. We propose and demonstrate a high-speed 2D scanning OPA based on thin-film lithium niobate phase modulators with traveling-wave electrodes. The measured modulation bandwidth is up to 2.5 GHz. Moreover, an aperiodic array combined with a slab grating antenna is also used to suppress the grating lobes of far-field beams, which enables a large field of view (FOV) as well as small beam width. A 16-channel OPA demonstrates an FOV of 50°×8.6° and a beam width of 0.73°×2.8° in the phase tuning direction and the wavelength scanning direction, respectively.
基于薄膜铌酸锂光学相控阵的大视场高速二维光束转向
片上光学相控阵(OPA)被认为是下一代固态光束控制的一种很有前途的解决方案。然而,大多数已报道的opa都存在低工作带宽的问题,这使得它们在许多应用中受到限制。我们提出并演示了一种基于行波电极的铌酸锂薄膜相位调制器的高速二维扫描OPA。测量到的调制带宽高达2.5 GHz。此外,还采用非周期阵列结合平板光栅天线抑制远场波束的光栅瓣,实现了大视场和小波束宽度。16通道OPA在相位调谐方向和波长扫描方向上的视场分别为50°×8.6°和0.73°×2.8°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.60
自引率
5.30%
发文量
1325
期刊介绍: Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信