Evolution of Tunneling Hydro-Technology: From Ancient Times to Present and Future

IF 3.1 Q2 WATER RESOURCES
Andreas N. Angelakis, Cees W. Passchier, Mohammad Valipour, Jens A. Krasilnikoff, Vasileios A. Tzanakakis, Abdelkader T. Ahmed, Alper Baba, Rohitashw Kumar, Esra Bilgic, Andrea G. Capodaglio, Nicholas Dercas
{"title":"Evolution of Tunneling Hydro-Technology: From Ancient Times to Present and Future","authors":"Andreas N. Angelakis, Cees W. Passchier, Mohammad Valipour, Jens A. Krasilnikoff, Vasileios A. Tzanakakis, Abdelkader T. Ahmed, Alper Baba, Rohitashw Kumar, Esra Bilgic, Andrea G. Capodaglio, Nicholas Dercas","doi":"10.3390/hydrology10090190","DOIUrl":null,"url":null,"abstract":"Water tunnels are one of the oldest hydro-technologies for extracting water resources and/or transmitting them through water distribution systems. In the past, human societies have used tunneling for various purposes, including development, as a measure to enable underground resource extraction and the construction of transportation networks in challenging landscapes and topographies. The development of hydro-technology potentially involves the construction of tunnels to feed aqueducts, irrigation and waste water systems. Thus, the ability to make and maintain tunnels became an important component in creating lasting and sustainable water systems, which increased water supply and security, minimized construction costs, and reduced environmental impact. Thus, this review asks how, when and why human societies of the past included tunneling for the development of lasting water supply systems. This review presents a comprehensive overview across time and space, covering the history of tunneling in hydro technology from antiquity to the present, and it ponders how past experiences could impact on future hydro-technological projects involving tunneling. A historical review of tunnel systems enhances our understanding of the potential, performance, challenges, and prospects associated with the use of hydro-techniques. In the past, as the different examples in time and space demonstrate, tunneling was often dedicated to solving local problems of supply and disposal. However, across the world, some features were repeated, including the need for carving through the living rock or digging to create tunnels covered with stone slabs. Also, the world-wide use of extensive and costly tunnel systems indicates the high level of investment which human societies are willing to make for securing control over and with its water resources. This study helps us to gather inspiration from proven technologies of the past and more recent knowledge of water tunnel design and construction. As we face global warming and its derivate problems, including problems of water scarcity and flooding, the ability to create and maintain tunnels remains an important technology for the future.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10090190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Water tunnels are one of the oldest hydro-technologies for extracting water resources and/or transmitting them through water distribution systems. In the past, human societies have used tunneling for various purposes, including development, as a measure to enable underground resource extraction and the construction of transportation networks in challenging landscapes and topographies. The development of hydro-technology potentially involves the construction of tunnels to feed aqueducts, irrigation and waste water systems. Thus, the ability to make and maintain tunnels became an important component in creating lasting and sustainable water systems, which increased water supply and security, minimized construction costs, and reduced environmental impact. Thus, this review asks how, when and why human societies of the past included tunneling for the development of lasting water supply systems. This review presents a comprehensive overview across time and space, covering the history of tunneling in hydro technology from antiquity to the present, and it ponders how past experiences could impact on future hydro-technological projects involving tunneling. A historical review of tunnel systems enhances our understanding of the potential, performance, challenges, and prospects associated with the use of hydro-techniques. In the past, as the different examples in time and space demonstrate, tunneling was often dedicated to solving local problems of supply and disposal. However, across the world, some features were repeated, including the need for carving through the living rock or digging to create tunnels covered with stone slabs. Also, the world-wide use of extensive and costly tunnel systems indicates the high level of investment which human societies are willing to make for securing control over and with its water resources. This study helps us to gather inspiration from proven technologies of the past and more recent knowledge of water tunnel design and construction. As we face global warming and its derivate problems, including problems of water scarcity and flooding, the ability to create and maintain tunnels remains an important technology for the future.
隧道水利技术的演变:从古至今与未来
水洞是最古老的水利技术之一,用于提取水资源和/或通过配水系统输送水资源。在过去,人类社会将隧道用于各种目的,包括开发,作为在具有挑战性的景观和地形中开采地下资源和建设交通网络的一种措施。水力技术的发展可能涉及隧道的建设,以供输水管道、灌溉和废水系统使用。因此,建造和维护隧道的能力成为创建持久和可持续供水系统的重要组成部分,从而增加了供水和安全,最大限度地降低了建设成本,并减少了对环境的影响。因此,这篇综述询问了过去的人类社会如何、何时以及为什么包括隧道以发展持久的供水系统。这篇综述提供了一个跨越时间和空间的全面概述,涵盖了从古代到现在的水力技术隧道的历史,并思考了过去的经验如何影响未来涉及隧道的水力技术项目。隧道系统的历史回顾提高了我们对水力技术应用的潜力、性能、挑战和前景的理解。在过去,正如时间和空间上的不同例子所表明的那样,隧道建设往往是为了解决当地的供应和处置问题。然而,在世界各地,有些特征是重复的,包括需要在活岩石上雕刻,或者挖出覆盖石板的隧道。此外,世界范围内广泛和昂贵的隧道系统的使用表明,人类社会愿意为确保对其水资源的控制和利用而进行高水平的投资。这项研究帮助我们从过去的成熟技术和最近的水洞设计和施工知识中收集灵感。当我们面对全球变暖及其衍生问题,包括水资源短缺和洪水问题时,建造和维护隧道的能力仍然是未来的一项重要技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrology
Hydrology Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍: Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信