An accelerated primal-dual method for semi-definite programming relaxation of optimal power flow

IF 1.6 Q4 ENERGY & FUELS
Zhan Shi, Xinying Wang, Dong Yan, Sheng Chen, Zhenwei Lin, Jingfan Xia, Qi Deng
{"title":"An accelerated primal-dual method for semi-definite programming relaxation of optimal power flow","authors":"Zhan Shi,&nbsp;Xinying Wang,&nbsp;Dong Yan,&nbsp;Sheng Chen,&nbsp;Zhenwei Lin,&nbsp;Jingfan Xia,&nbsp;Qi Deng","doi":"10.1049/esi2.12115","DOIUrl":null,"url":null,"abstract":"<p>The application of a semi-definite programming (SDP) approach to the Alternating Current Optimal Power Flow problem has attracted significant attention in recent years. However, the SDP relaxation of optimal power flow (OPF) can be computationally intensive and lead to memory issues when dealing with large-scale power systems. To overcome these challenges, we have developed APD–SDP, an optimisation solver based on a first-order primal–dual algorithm. This framework incorporates various acceleration techniques, such as rescaling, step size decay and reset, adaptive line search, and restart, to improve efficiency. To further speed up computations, we have developed a customised eigenvalue decomposition component by exploiting the 3 × 3 block structure in the dual SDP formulation. Experimental results demonstrate that APD–SDP outperforms other commercial and open-source SDP solvers on large-scale and high-dimensional PGLib-OPF datasets.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 4","pages":"477-490"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The application of a semi-definite programming (SDP) approach to the Alternating Current Optimal Power Flow problem has attracted significant attention in recent years. However, the SDP relaxation of optimal power flow (OPF) can be computationally intensive and lead to memory issues when dealing with large-scale power systems. To overcome these challenges, we have developed APD–SDP, an optimisation solver based on a first-order primal–dual algorithm. This framework incorporates various acceleration techniques, such as rescaling, step size decay and reset, adaptive line search, and restart, to improve efficiency. To further speed up computations, we have developed a customised eigenvalue decomposition component by exploiting the 3 × 3 block structure in the dual SDP formulation. Experimental results demonstrate that APD–SDP outperforms other commercial and open-source SDP solvers on large-scale and high-dimensional PGLib-OPF datasets.

Abstract Image

优化功率流半有限编程松弛的加速原始二元方法
近年来,半有限编程(SDP)方法在交流电最优功率流问题中的应用引起了广泛关注。然而,最优功率流 (OPF) 的 SDP 松弛法计算密集,在处理大规模电力系统时会导致内存问题。为了克服这些挑战,我们开发了 APD-SDP,这是一种基于一阶基元二元算法的优化求解器。该框架采用了各种加速技术,如重缩放、步长衰减和重置、自适应线搜索和重启,以提高效率。为了进一步加快计算速度,我们利用对偶 SDP 公式中的 3 × 3 块结构,开发了一个定制的特征值分解组件。实验结果表明,在大规模高维 PGLib-OPF 数据集上,APD-SDP 的性能优于其他商业和开源 SDP 求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信