On the Dirichlet problem for A-harmonic functions

V.Ya. Gutlyanskiĭ, V.I. Ryazanov, E.A. Sevost’yanov, E. Yakubov
{"title":"On the Dirichlet problem for A-harmonic functions","authors":"V.Ya. Gutlyanskiĭ, V.I. Ryazanov, E.A. Sevost’yanov, E. Yakubov","doi":"10.15407/dopovidi2023.04.011","DOIUrl":null,"url":null,"abstract":"We study the Dirichlet boundary value problem with continuous boundary data for the A-harmonic equations div[A grad u] = 0 in an arbitrary bounded domain D of the complex plane £ with no boundary component degenerated to a single point. We provide integral criteria, including the BMO and FMO criteria expressed in terms of A (z), for the existence of weak solutions to the problem. We also discuss the connections between A-harmonic functions and potential theory.","PeriodicalId":20898,"journal":{"name":"Reports of the National Academy of Sciences of Ukraine","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of the National Academy of Sciences of Ukraine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/dopovidi2023.04.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Dirichlet boundary value problem with continuous boundary data for the A-harmonic equations div[A grad u] = 0 in an arbitrary bounded domain D of the complex plane £ with no boundary component degenerated to a single point. We provide integral criteria, including the BMO and FMO criteria expressed in terms of A (z), for the existence of weak solutions to the problem. We also discuss the connections between A-harmonic functions and potential theory.
关于a -调和函数的Dirichlet问题
研究了无边界分量退化为单点的复平面£的任意有界域D上A-调和方程div[A grad u] = 0具有连续边界数据的Dirichlet边值问题。我们给出了问题弱解存在的积分判据,包括用A (z)表示的BMO和FMO判据。我们还讨论了a -调和函数与势理论之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信