Mahshid Askarizadeh, Dr. Nadia Esfandiari, Dr. Bizhan Honarvar, Dr. Seyed Ali Sajadian, Dr. Amin Azdarpour
{"title":"Kinetic Modeling to Explain the Release of Medicine from Drug Delivery Systems","authors":"Mahshid Askarizadeh, Dr. Nadia Esfandiari, Dr. Bizhan Honarvar, Dr. Seyed Ali Sajadian, Dr. Amin Azdarpour","doi":"10.1002/cben.202300027","DOIUrl":null,"url":null,"abstract":"<p>Proper medication dissolution must be ensured when developing or manufacturing a new solid dosage form. Quantitative analyses performed in dissolution or release tests become simpler when applying mathematical formulae which represent dissolution outcomes as a function of several dosage form properties. Methodologies utilized to examine the kinetics of drug release from controlled-release formulations are reviewed. The analysis of variance was conducted using statistical, model-independent, and -dependent techniques for the dissolution profile comparison and fitting, respectively. Model equations, including zero- and first-order, Hixson-Crowell, Weibull, Higuchi, Korsmeyer-Peppas, Baker-Lonsdale, Hopfenberg, etc., were employed to match the experimental data. Additional release parameters were taken to illustrate the drug release patterns. Using correlation factors and the Akaike information criterion (AIC), the best-fitting model was discovered, as were the transport phenomena affecting the behavior of the recognized formulations.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"10 6","pages":"1006-1049"},"PeriodicalIF":6.2000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Proper medication dissolution must be ensured when developing or manufacturing a new solid dosage form. Quantitative analyses performed in dissolution or release tests become simpler when applying mathematical formulae which represent dissolution outcomes as a function of several dosage form properties. Methodologies utilized to examine the kinetics of drug release from controlled-release formulations are reviewed. The analysis of variance was conducted using statistical, model-independent, and -dependent techniques for the dissolution profile comparison and fitting, respectively. Model equations, including zero- and first-order, Hixson-Crowell, Weibull, Higuchi, Korsmeyer-Peppas, Baker-Lonsdale, Hopfenberg, etc., were employed to match the experimental data. Additional release parameters were taken to illustrate the drug release patterns. Using correlation factors and the Akaike information criterion (AIC), the best-fitting model was discovered, as were the transport phenomena affecting the behavior of the recognized formulations.
ChemBioEng ReviewsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍:
Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,