Kinetic Modeling to Explain the Release of Medicine from Drug Delivery Systems

IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Mahshid Askarizadeh, Dr. Nadia Esfandiari, Dr. Bizhan Honarvar, Dr. Seyed Ali Sajadian, Dr. Amin Azdarpour
{"title":"Kinetic Modeling to Explain the Release of Medicine from Drug Delivery Systems","authors":"Mahshid Askarizadeh,&nbsp;Dr. Nadia Esfandiari,&nbsp;Dr. Bizhan Honarvar,&nbsp;Dr. Seyed Ali Sajadian,&nbsp;Dr. Amin Azdarpour","doi":"10.1002/cben.202300027","DOIUrl":null,"url":null,"abstract":"<p>Proper medication dissolution must be ensured when developing or manufacturing a new solid dosage form. Quantitative analyses performed in dissolution or release tests become simpler when applying mathematical formulae which represent dissolution outcomes as a function of several dosage form properties. Methodologies utilized to examine the kinetics of drug release from controlled-release formulations are reviewed. The analysis of variance was conducted using statistical, model-independent, and -dependent techniques for the dissolution profile comparison and fitting, respectively. Model equations, including zero- and first-order, Hixson-Crowell, Weibull, Higuchi, Korsmeyer-Peppas, Baker-Lonsdale, Hopfenberg, etc., were employed to match the experimental data. Additional release parameters were taken to illustrate the drug release patterns. Using correlation factors and the Akaike information criterion (AIC), the best-fitting model was discovered, as were the transport phenomena affecting the behavior of the recognized formulations.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"10 6","pages":"1006-1049"},"PeriodicalIF":6.2000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Proper medication dissolution must be ensured when developing or manufacturing a new solid dosage form. Quantitative analyses performed in dissolution or release tests become simpler when applying mathematical formulae which represent dissolution outcomes as a function of several dosage form properties. Methodologies utilized to examine the kinetics of drug release from controlled-release formulations are reviewed. The analysis of variance was conducted using statistical, model-independent, and -dependent techniques for the dissolution profile comparison and fitting, respectively. Model equations, including zero- and first-order, Hixson-Crowell, Weibull, Higuchi, Korsmeyer-Peppas, Baker-Lonsdale, Hopfenberg, etc., were employed to match the experimental data. Additional release parameters were taken to illustrate the drug release patterns. Using correlation factors and the Akaike information criterion (AIC), the best-fitting model was discovered, as were the transport phenomena affecting the behavior of the recognized formulations.

Abstract Image

Abstract Image

用动力学模型解释药物从给药系统中的释放
在开发或制造新的固体剂型时,必须确保适当的药物溶出度。当应用数学公式将溶出结果表示为几种剂型性质的函数时,在溶出或释放试验中进行的定量分析变得更简单。用于检查药物从控释制剂释放动力学的方法进行了审查。方差分析分别使用统计、模型无关和依赖技术进行溶出曲线比较和拟合。采用零阶和一阶模型方程、Hixson-Crowell、Weibull、Higuchi、Korsmeyer-Peppas、Baker-Lonsdale、Hopfenberg等模型方程对实验数据进行匹配。采用其他释放参数来说明药物释放模式。利用相关因子和赤池信息准则(AIC),发现了最佳拟合模型,以及影响已识别配方行为的传递现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioEng Reviews
ChemBioEng Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍: Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信