Wen-Bin Doo, Chung-Liang Lo, Yin-Sheng Huang, Wen-Nan Wu, Shiou-Ya Wang
{"title":"Variations in the crustal structure and strength of plate coupling along the Ryukyu subduction zone","authors":"Wen-Bin Doo, Chung-Liang Lo, Yin-Sheng Huang, Wen-Nan Wu, Shiou-Ya Wang","doi":"10.1186/s40562-023-00300-y","DOIUrl":null,"url":null,"abstract":"Abstract The Ryukyu trench-arc-back arc system is part of the subduction margins of the Philippine Sea plate. Previous studies have indicated that several geophysical and geological characteristics reveal significant variations (including convergent rate, topography, subducting slab angle etc.) along this subduction system. In addition, the strength of plate coupling and the potential of large earthquake occurrence in the Ryukyu subduction zone have been major subjects of debate for decades. To gain new insights into the spatial variations in the crustal structure and strength of plate coupling along the Ryukyu subduction zone, in the present study, based on three P-wave seismic velocity profiles, we construct density models for 2-D gravity modeling. Then, we estimate the mantle lithosphere buoyancy (H m ) using these three density models to determine the strength of plate coupling between the subducting Philippine Sea plate and the overriding Eurasian plate, which could provide information for evaluating large earthquakes potential. 2-D gravity modeling results reveal that oceanic plateaus and/or submarine ridges with obviously less dense and thick oceanic crust are subducting in the northern and central parts of the Ryukyu Trench, which could increase the slab buoyancy in these regions. The H m results indicate that the strength of plate coupling is almost weak in the north and is relatively strong in the central Ryukyu subduction zone.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"42 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40562-023-00300-y","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The Ryukyu trench-arc-back arc system is part of the subduction margins of the Philippine Sea plate. Previous studies have indicated that several geophysical and geological characteristics reveal significant variations (including convergent rate, topography, subducting slab angle etc.) along this subduction system. In addition, the strength of plate coupling and the potential of large earthquake occurrence in the Ryukyu subduction zone have been major subjects of debate for decades. To gain new insights into the spatial variations in the crustal structure and strength of plate coupling along the Ryukyu subduction zone, in the present study, based on three P-wave seismic velocity profiles, we construct density models for 2-D gravity modeling. Then, we estimate the mantle lithosphere buoyancy (H m ) using these three density models to determine the strength of plate coupling between the subducting Philippine Sea plate and the overriding Eurasian plate, which could provide information for evaluating large earthquakes potential. 2-D gravity modeling results reveal that oceanic plateaus and/or submarine ridges with obviously less dense and thick oceanic crust are subducting in the northern and central parts of the Ryukyu Trench, which could increase the slab buoyancy in these regions. The H m results indicate that the strength of plate coupling is almost weak in the north and is relatively strong in the central Ryukyu subduction zone.
Geoscience LettersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍:
Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.