Effect of Carbohydrates on the Formation Process and Performance of Micro-Arc Oxidation Coatings on AZ31B Magnesium Alloy

Yingxiu Du, Mingyue Hu, Xiaohua Tu, Chengping Miao, Yang Zhang, Jiayou Li
{"title":"Effect of Carbohydrates on the Formation Process and Performance of Micro-Arc Oxidation Coatings on AZ31B Magnesium Alloy","authors":"Yingxiu Du, Mingyue Hu, Xiaohua Tu, Chengping Miao, Yang Zhang, Jiayou Li","doi":"10.3390/technologies11050139","DOIUrl":null,"url":null,"abstract":"An environmentally friendly alkaline electrolyte of silicate and borate, which contained the addition of carbohydrates (lactose, starch, and dextrin), was applied to produce micro-arc oxidation (MAO) coatings on AZ31B magnesium alloy surfaces in constant current mode. The effects of the carbohydrates on the performance of the MAO coatings were investigated using a scanning electron microscope (SEM), an X-ray diffractometer (XRD), energy-dispersive spectroscopy (EDS), the salt spray test, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS). The results show that the carbohydrates effectively inhibited spark discharge, so the anodized growth process, surface morphology, composition, and corrosion resistance of the MAO coatings were strongly dependent on the carbohydrate concentration. This is ascribed to the surface adsorption layer formed on the surface of the magnesium alloy. When the carbohydrate concentration was 10 g/L, smooth, compact, and thick MAO coatings with excellent corrosion resistance on the magnesium alloy were obtained.","PeriodicalId":472933,"journal":{"name":"Technologies (Basel)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies (Basel)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies11050139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An environmentally friendly alkaline electrolyte of silicate and borate, which contained the addition of carbohydrates (lactose, starch, and dextrin), was applied to produce micro-arc oxidation (MAO) coatings on AZ31B magnesium alloy surfaces in constant current mode. The effects of the carbohydrates on the performance of the MAO coatings were investigated using a scanning electron microscope (SEM), an X-ray diffractometer (XRD), energy-dispersive spectroscopy (EDS), the salt spray test, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS). The results show that the carbohydrates effectively inhibited spark discharge, so the anodized growth process, surface morphology, composition, and corrosion resistance of the MAO coatings were strongly dependent on the carbohydrate concentration. This is ascribed to the surface adsorption layer formed on the surface of the magnesium alloy. When the carbohydrate concentration was 10 g/L, smooth, compact, and thick MAO coatings with excellent corrosion resistance on the magnesium alloy were obtained.
碳水化合物对AZ31B镁合金微弧氧化膜形成过程及性能的影响
这是由于镁合金表面形成了表面吸附层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信