{"title":"Microstructure and mechanical properties of laser beam welded 10 mm-thick Q345 steel joints","authors":"Weifeng Xie, Hao Tu, Keyu Nian, Xiaobin Zhang","doi":"10.1080/09507116.2023.2281502","DOIUrl":null,"url":null,"abstract":"AbstractThe present study systematically investigated the effects of a laser welding speed and a defocusing amount on the microstructure and mechanical properties of low alloy high strength Q345 steel joints. The macro-morphology, microstructure, Vickers microhardness, and tensile properties of as-welded joints were analyzed. The results indicated a significant correlation between the laser welding speed and the size of individual zones within the welded joint. As the laser welding speed increased, the size of each zone decreased noticeably. The microstructure of the fusion zone was composed of proeutectoid ferrite, ferrite side-plate, and acicular ferrite. An increase in welding speed and defocusing amount facilitated microstructural changes towards formation of ferrite side-plate and acicular ferrite. Maximum tensile strength and maximum elongation of as welded joints were measured to be 669 MPa and 21.8%, respectively. The joints with maximum tensile strength tended to fracture within the fusion zone. The increase in welding speed and defocusing amount caused a significant decrease in normalized enthalpy and volumetric energy density.Keywords: Q345 steellaser welding speeddefocusing amountmicrostructuremechanical properties AcknowledgementsThe authors acknowledge funding from the Natural Science Foundation of Jilin Province (No. 20220101250JC), China.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.","PeriodicalId":23605,"journal":{"name":"Welding International","volume":"14 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09507116.2023.2281502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThe present study systematically investigated the effects of a laser welding speed and a defocusing amount on the microstructure and mechanical properties of low alloy high strength Q345 steel joints. The macro-morphology, microstructure, Vickers microhardness, and tensile properties of as-welded joints were analyzed. The results indicated a significant correlation between the laser welding speed and the size of individual zones within the welded joint. As the laser welding speed increased, the size of each zone decreased noticeably. The microstructure of the fusion zone was composed of proeutectoid ferrite, ferrite side-plate, and acicular ferrite. An increase in welding speed and defocusing amount facilitated microstructural changes towards formation of ferrite side-plate and acicular ferrite. Maximum tensile strength and maximum elongation of as welded joints were measured to be 669 MPa and 21.8%, respectively. The joints with maximum tensile strength tended to fracture within the fusion zone. The increase in welding speed and defocusing amount caused a significant decrease in normalized enthalpy and volumetric energy density.Keywords: Q345 steellaser welding speeddefocusing amountmicrostructuremechanical properties AcknowledgementsThe authors acknowledge funding from the Natural Science Foundation of Jilin Province (No. 20220101250JC), China.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
期刊介绍:
Welding International provides comprehensive English translations of complete articles, selected from major international welding journals, including: Journal of Japan Welding Society - Japan Journal of Light Metal Welding and Construction - Japan Przeglad Spawalnictwa - Poland Quarterly Journal of Japan Welding Society - Japan Revista de Metalurgia - Spain Rivista Italiana della Saldatura - Italy Soldagem & Inspeção - Brazil Svarochnoe Proizvodstvo - Russia Welding International is a well-established and widely respected journal and the translators are carefully chosen with each issue containing a balanced selection of between 15 and 20 articles. The articles cover research techniques, equipment and process developments, applications and material and are not available elsewhere in English. This journal provides a valuable and unique service for those needing to keep up-to-date on the latest developments in welding technology in non-English speaking countries.