{"title":"Enhanced cancer immunotherapy through synergistic ferroptosis and immune checkpoint blockade using cell membrane-coated nanoparticles","authors":"Yeteng Mu, Yuxin Fan, Lianping He, Nannan Hu, Han Xue, Xingang Guan, Zhijian Zheng","doi":"10.1186/s12645-023-00234-2","DOIUrl":null,"url":null,"abstract":"Abstract Background Immune checkpoint blockade (ICB) has achieved unprecedented success in inhibiting the progression and metastasis of many cancers. However, ICB regents as a single treatment have a relatively low overall response rate due to the tumor’s low immunogenicity and immunosuppressive microenvironment. Herein, we report a PD-1 cellular membrane-coated ferroptosis nanoinducer to potentiate cancer immunotherapy toward triple-negative breast cancer. Results This study demonstrates that PD-1 membrane-coated RSL3 nanoparticles (PD-1@RSL3 NPs) have the ability to disrupt the PD-1/PD-L1 axis, leading to the activation of antitumor immunity in breast cancer. In addition, the nanoparticles promote the induction of tumor cell ferroptosis through GPX4 inhibition, enhanced infiltration of CD8 + T cells, and maturation of dendritic cells. The potentiated antitumor immune response induced by PD-1@RSL3 NPs significantly delayed tumor progression and extended the survival rate of mice with breast cancer xenografts. Conclusions Our study suggest the potential of PD-1@RSL3 NPs as an effective therapeutic approach for breast cancer by promoting tumor cell ferroptosis and inducing antitumor immunity.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12645-023-00234-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Background Immune checkpoint blockade (ICB) has achieved unprecedented success in inhibiting the progression and metastasis of many cancers. However, ICB regents as a single treatment have a relatively low overall response rate due to the tumor’s low immunogenicity and immunosuppressive microenvironment. Herein, we report a PD-1 cellular membrane-coated ferroptosis nanoinducer to potentiate cancer immunotherapy toward triple-negative breast cancer. Results This study demonstrates that PD-1 membrane-coated RSL3 nanoparticles (PD-1@RSL3 NPs) have the ability to disrupt the PD-1/PD-L1 axis, leading to the activation of antitumor immunity in breast cancer. In addition, the nanoparticles promote the induction of tumor cell ferroptosis through GPX4 inhibition, enhanced infiltration of CD8 + T cells, and maturation of dendritic cells. The potentiated antitumor immune response induced by PD-1@RSL3 NPs significantly delayed tumor progression and extended the survival rate of mice with breast cancer xenografts. Conclusions Our study suggest the potential of PD-1@RSL3 NPs as an effective therapeutic approach for breast cancer by promoting tumor cell ferroptosis and inducing antitumor immunity.
Cancer NanotechnologyPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
5.20
自引率
1.80%
发文量
37
审稿时长
15 weeks
期刊介绍:
Aim:
Recognizing cancer as a group of diseases caused by nanostructural problems (i.e. with DNA) and also that there are unique benefits to approaches inherently involving nanoscale structures and processes to treat the disease, the journal Cancer Nanotechnology aims to disseminate cutting edge research; to promote emerging trends in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis, treatment of cancer; and to cover related ancillary areas.
Scope:
Articles describing original research in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis and treatment of cancer (open submission process). Review, editorial and tutorial articles picking up on subthemes of emerging importance where nanostructures and the induction of nanoscale processes are used for the prevention, diagnosis and treatment of cancer.