Claudia Patricia Colmenero-Chacón, Heriberto Morales-deAvila, Mélida Gutiérrez, Maria Vicenta Esteller-Alberich, Maria Teresa Alarcón-Herrera
{"title":"Enrichment and Temporal Trends of Groundwater Salinity in Central Mexico","authors":"Claudia Patricia Colmenero-Chacón, Heriberto Morales-deAvila, Mélida Gutiérrez, Maria Vicenta Esteller-Alberich, Maria Teresa Alarcón-Herrera","doi":"10.3390/hydrology10100194","DOIUrl":null,"url":null,"abstract":"Groundwater salinization is a major threat to the water supply in coastal and arid areas, a threat that is expected to worsen by increased groundwater withdrawals and by global warming. Groundwater quality in Central Mexico may be at risk of salinization due to its arid climate and since groundwater is the primary source for drinking and agriculture water. Only a handful of studies on groundwater salinization have been reported for this region, most constrained to a small area and without trend analyses. To determine the extent of salinization, total dissolved solids (TDS), sodium (Na+), nitrate as nitrogen (NO3-N) and sodium adsorption ratio (SAR) are commonly used. Available water quality data for about 200 wells, sampled annually between 2012 and 2021, were used to map the spatial distribution of NO3-N, TDS, Na+, and SAR. Upward trends and Spearman correlation were also determined. The study area was subdivided into three sections to estimate the impact of climate and lithologies on groundwater salinity. The results showed that human activities (agriculture) and dissolution of carbonate and evaporite rocks were major sources of salinity, and evaporation an enriching factor. Temporal trends occurred in only a few (about 7%) wells, primarily in NO3-N. The water quality for irrigation was generally good, (SAR < 10 in 95% of samples); however, eight wells contained water hazardous to soil (TDS > 1750 mg L−1 and SAR > 9). The results detected one aquifer with consistently high concentrations and upward trends and eight lesser impacted aquifers. Identifying the wells with upward trends is important in narrowing down the possible causes of their concentration increase with time and to develop strategies that will infuse sustainability to groundwater management.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10100194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater salinization is a major threat to the water supply in coastal and arid areas, a threat that is expected to worsen by increased groundwater withdrawals and by global warming. Groundwater quality in Central Mexico may be at risk of salinization due to its arid climate and since groundwater is the primary source for drinking and agriculture water. Only a handful of studies on groundwater salinization have been reported for this region, most constrained to a small area and without trend analyses. To determine the extent of salinization, total dissolved solids (TDS), sodium (Na+), nitrate as nitrogen (NO3-N) and sodium adsorption ratio (SAR) are commonly used. Available water quality data for about 200 wells, sampled annually between 2012 and 2021, were used to map the spatial distribution of NO3-N, TDS, Na+, and SAR. Upward trends and Spearman correlation were also determined. The study area was subdivided into three sections to estimate the impact of climate and lithologies on groundwater salinity. The results showed that human activities (agriculture) and dissolution of carbonate and evaporite rocks were major sources of salinity, and evaporation an enriching factor. Temporal trends occurred in only a few (about 7%) wells, primarily in NO3-N. The water quality for irrigation was generally good, (SAR < 10 in 95% of samples); however, eight wells contained water hazardous to soil (TDS > 1750 mg L−1 and SAR > 9). The results detected one aquifer with consistently high concentrations and upward trends and eight lesser impacted aquifers. Identifying the wells with upward trends is important in narrowing down the possible causes of their concentration increase with time and to develop strategies that will infuse sustainability to groundwater management.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.