Liquid metal-based strain-sensing glove for human-machine interaction

Soft science Pub Date : 2023-08-17 DOI:10.20517/ss.2023.26
Pengcheng Wu, Chun Ki Yiu, Xingcan Huang, Jiyu Li, Guoqiang Xu, Yuyu Gao, Kuanming Yao, Lung Chow, Guangyao Zhao, Yawen Yang, Yanli Jiao, Xinge Yu
{"title":"Liquid metal-based strain-sensing glove for human-machine interaction","authors":"Pengcheng Wu, Chun Ki Yiu, Xingcan Huang, Jiyu Li, Guoqiang Xu, Yuyu Gao, Kuanming Yao, Lung Chow, Guangyao Zhao, Yawen Yang, Yanli Jiao, Xinge Yu","doi":"10.20517/ss.2023.26","DOIUrl":null,"url":null,"abstract":"Soft and stretchable strain sensors have aroused great interest in research and engineering fields due to their promising application potential in many areas, including human-machine interface and healthcare monitoring. However, developing stable, strain-sensitive, and fatigue-resistant wearable strain sensors remains challenging. Herein, we report a low-cost strain-sensing glove based on a commercial nitrile glove and liquid metal as both sensing units and circuit/interconnects, with excellent response to strains and great stability in long-term use. The liquid metal sensing circuit is prepared by scraping the liquid metal slurry in situ on glove fingers, followed by soft silicone encapsulation. The whole process does not involve toxic chemicals, so no strict requirements on the operating environment are necessary. The strain-sensing glove is capable of real-time monitoring of finger gestures in a very sensitive and accurate way, which exhibits great application potential as a soft controller in manipulating the machine hand to achieve related human-machine interaction.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2023.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soft and stretchable strain sensors have aroused great interest in research and engineering fields due to their promising application potential in many areas, including human-machine interface and healthcare monitoring. However, developing stable, strain-sensitive, and fatigue-resistant wearable strain sensors remains challenging. Herein, we report a low-cost strain-sensing glove based on a commercial nitrile glove and liquid metal as both sensing units and circuit/interconnects, with excellent response to strains and great stability in long-term use. The liquid metal sensing circuit is prepared by scraping the liquid metal slurry in situ on glove fingers, followed by soft silicone encapsulation. The whole process does not involve toxic chemicals, so no strict requirements on the operating environment are necessary. The strain-sensing glove is capable of real-time monitoring of finger gestures in a very sensitive and accurate way, which exhibits great application potential as a soft controller in manipulating the machine hand to achieve related human-machine interaction.
用于人机交互的液态金属应变传感手套
柔性和可拉伸应变传感器由于在人机界面和医疗监测等领域具有广阔的应用前景,引起了研究和工程领域的极大兴趣。然而,开发稳定、应变敏感和抗疲劳的可穿戴应变传感器仍然具有挑战性。在此,我们报告了一种基于商用丁腈手套和液态金属作为传感单元和电路/互连的低成本应变传感手套,具有出色的应变响应和长期使用的稳定性。液态金属传感电路的制备方法是将液态金属浆料原位刮擦在手套手指上,然后进行软硅胶封装。整个过程不涉及有毒化学品,因此对操作环境没有严格的要求。该应变传感手套能够以非常灵敏和准确的方式实时监测手指的手势,在操纵机械手实现相关的人机交互方面,作为软控制器具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信