The warm Arctic-cold north american pattern in CanESM5 large ensemble simulations: Eurasian influence and uncertainty due to internal variability

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Bin Yu, Hai Lin
{"title":"The warm Arctic-cold north american pattern in CanESM5 large ensemble simulations: Eurasian influence and uncertainty due to internal variability","authors":"Bin Yu, Hai Lin","doi":"10.1007/s00382-023-06966-6","DOIUrl":null,"url":null,"abstract":"Abstract This study examines the warm Arctic-cold North American pattern (WACNA) and its connection with the warm Arctic-cold Eurasia pattern (WACE) using ERA5 reanalysis and a 50-member ensemble of historical climate simulations produced by CanESM5, the Canadian model participated in CMIP6. The results indicate that a negative WACE-like pattern typically precedes a positive WACNA pattern by one month, and the presence of a negative Asian-Bering-North American (ABNA)-like circulation pattern connects Eurasia and North America, along with the Pacific-North American (PNA)-like pattern. The negative ABNA-like pattern can be attributed to anomalous heating in southern Siberia, which is associated with the negative WACE pattern and its featured Eurasian warming. The negative PNA-like pattern is influenced by negative SST anomalies in the tropical Pacific, resembling tropical ENSO variability. Anomalous temperature advection in the lower troposphere follows the circulation anomaly, which supports the formation of WACNA. Conversely, processes with circulation anomalies of opposite sign result in a negative WACNA pattern. The tropical ENSO variability does not significantly impact the WACNA pattern and its linkage with WACE. CanESM5 simulates the WACNA pattern and WACE-WACNA connection well, with some discrepancies in the magnitude of anomalies compared to ERA5 reanalysis. The uncertainty in the simulated WACNA pattern due to internal climate variability is dominated by two modes of inter-member variability: a southeast-northwest phase shift and a local variation in amplitude.","PeriodicalId":10165,"journal":{"name":"Climate Dynamics","volume":"56 1","pages":"0"},"PeriodicalIF":3.8000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00382-023-06966-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study examines the warm Arctic-cold North American pattern (WACNA) and its connection with the warm Arctic-cold Eurasia pattern (WACE) using ERA5 reanalysis and a 50-member ensemble of historical climate simulations produced by CanESM5, the Canadian model participated in CMIP6. The results indicate that a negative WACE-like pattern typically precedes a positive WACNA pattern by one month, and the presence of a negative Asian-Bering-North American (ABNA)-like circulation pattern connects Eurasia and North America, along with the Pacific-North American (PNA)-like pattern. The negative ABNA-like pattern can be attributed to anomalous heating in southern Siberia, which is associated with the negative WACE pattern and its featured Eurasian warming. The negative PNA-like pattern is influenced by negative SST anomalies in the tropical Pacific, resembling tropical ENSO variability. Anomalous temperature advection in the lower troposphere follows the circulation anomaly, which supports the formation of WACNA. Conversely, processes with circulation anomalies of opposite sign result in a negative WACNA pattern. The tropical ENSO variability does not significantly impact the WACNA pattern and its linkage with WACE. CanESM5 simulates the WACNA pattern and WACE-WACNA connection well, with some discrepancies in the magnitude of anomalies compared to ERA5 reanalysis. The uncertainty in the simulated WACNA pattern due to internal climate variability is dominated by two modes of inter-member variability: a southeast-northwest phase shift and a local variation in amplitude.
CanESM5大集合模拟中的暖北极-冷北美格局:欧亚大陆的影响和内部变率造成的不确定性
利用ERA5再分析和CMIP6中加拿大模式CanESM5生成的50个历史气候模拟集合,研究了北美暖北极-冷模式(WACNA)及其与欧亚暖北极-冷模式(WACE)的联系。结果表明,负的wace型通常比正的WACNA型早一个月,负的亚洲-白令-北美(ABNA)型环流连接欧亚大陆和北美,同时存在太平洋-北美(PNA)型环流。负的abna样型可归因于西伯利亚南部的异常升温,这与负的WACE型及其特征的欧亚变暖有关。pna -样负型受热带太平洋海温负异常的影响,类似于热带ENSO变率。对流层下层温度平流异常伴随环流异常,支持WACNA的形成。相反,具有相反符号的环流异常的过程导致负WACNA模式。热带ENSO变率对WACNA型及其与WACE的联系没有显著影响。CanESM5很好地模拟了WACNA模式和WACE-WACNA连接,与ERA5再分析相比,在异常幅度上存在一些差异。由内部气候变率引起的模拟WACNA型的不确定性主要由两种成员间变率模态主导:东南-西北相移和局地振幅变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Climate Dynamics
Climate Dynamics 地学-气象与大气科学
CiteScore
8.80
自引率
15.20%
发文量
483
审稿时长
2-4 weeks
期刊介绍: The international journal Climate Dynamics provides for the publication of high-quality research on all aspects of the dynamics of the global climate system. Coverage includes original paleoclimatic, diagnostic, analytical and numerical modeling research on the structure and behavior of the atmosphere, oceans, cryosphere, biomass and land surface as interacting components of the dynamics of global climate. Contributions are focused on selected aspects of climate dynamics on particular scales of space or time. The journal also publishes reviews and papers emphasizing an integrated view of the physical and biogeochemical processes governing climate and climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信