Danial Qadir, Rabia Sharif, Rizwan Nasir, Ali Awad, Hafiz Abdul Mannan
{"title":"A review on coatings through thermal spraying","authors":"Danial Qadir, Rabia Sharif, Rizwan Nasir, Ali Awad, Hafiz Abdul Mannan","doi":"10.1007/s11696-023-03089-4","DOIUrl":null,"url":null,"abstract":"<div><p>Ceramic-coated metals with enhanced properties such as chemical and environmental deterioration resistance and high thermal stability have previously found widespread uses in various industries. However, their application was limited due to weak bonding at the interfaces of dissimilar materials. To achieve the necessary interfaces and bonding qualities, a variety of procedures, primarily mechanical treatments, were used. Interface structure and composition, transition temperature, and wettability are important characteristics. In this review, extensive study has been carried out for several thermal spray methods, such as flame spray, electric arc spray, and plasma spray technology. The study explores microstructural elements of plasma-sprayed coatings, including bonding mechanisms, pore creation, oxides formation, and other important process parameters. The study emphasizes how crucial wetness is to coating development. It looks at what affects wetting, how interfacial reactions affect reactive wetting, and how important additives or reactive materials are to encouraging wetting. In conclusion, the authors suggest the next studies and technological developments in coating technologies and thermal spray procedures. The study contributes to the continuous advancement of these processes and their applications by pointing out opportunities for more research and development.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"78 1","pages":"71 - 91"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-023-03089-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Ceramic-coated metals with enhanced properties such as chemical and environmental deterioration resistance and high thermal stability have previously found widespread uses in various industries. However, their application was limited due to weak bonding at the interfaces of dissimilar materials. To achieve the necessary interfaces and bonding qualities, a variety of procedures, primarily mechanical treatments, were used. Interface structure and composition, transition temperature, and wettability are important characteristics. In this review, extensive study has been carried out for several thermal spray methods, such as flame spray, electric arc spray, and plasma spray technology. The study explores microstructural elements of plasma-sprayed coatings, including bonding mechanisms, pore creation, oxides formation, and other important process parameters. The study emphasizes how crucial wetness is to coating development. It looks at what affects wetting, how interfacial reactions affect reactive wetting, and how important additives or reactive materials are to encouraging wetting. In conclusion, the authors suggest the next studies and technological developments in coating technologies and thermal spray procedures. The study contributes to the continuous advancement of these processes and their applications by pointing out opportunities for more research and development.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.