Investigation of Tip Leakage Vortex Breakdown in a High-Speed Multistage Axial Compressor

IF 1.9 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Ryosuke Seki, Toshihiko Azuma, Juniji Iwatani, Akihiro Nakaniwa, Hidetaka Okui, Takanori Shibata
{"title":"Investigation of Tip Leakage Vortex Breakdown in a High-Speed Multistage Axial Compressor","authors":"Ryosuke Seki, Toshihiko Azuma, Juniji Iwatani, Akihiro Nakaniwa, Hidetaka Okui, Takanori Shibata","doi":"10.1115/1.4056981","DOIUrl":null,"url":null,"abstract":"Abstract In this article, an unsteady tip leakage flow instability is identified and investigated for an axial compressor at near-surge conditions. We describe the results of experimental verification of a new compressor developed by improving the blade geometry based on the criterion for the occurrence of this unsteady phenomenon. In a high-speed multistage axial flow compressor having a subsonic high stagger rotor blade, a surge test was carried out by changing the tip clearance. Under a condition of large tip clearance, a drastic decrease in the static pressure rise coefficient near the surge point was observed. At this operating condition, large, unsteady pressure fluctuation at the blade tip was confirmed, and the occurrence of tip leakage vortex breakdown was clarified by unsteady multipoint pressure measurement and detailed unsteady numerical simulations. Due to the blockage effect caused by vortex breakdown of the tip leakage, double leakage and axially reversed flow near the trailing edge were observed. It was found that the vortex breakdown region of the tip leakage vortex propagated in the circumferential direction and caused the rotating instability. In order to investigate the relationship among this unsteady flow phenomenon, tip clearance size, and flow pattern, unsteady calculation was conducted by changing the blade tip stagger and tip clearance size. A new concept of tip clearance of staggered pitch reference was proposed, which makes it possible to include the effect of blade loading on the clearance and clarifies that there exists a threshold at which vortex breakdown occurs/does not occur. On the basis of the aforementioned results, a high-speed multistage improved compressor was designed and manufactured to prevent tip leakage vortex breakdown. A clearance change test using active clearance control technology was conducted, and an increase in the static pressure rise coefficient near the surge point was confirmed for each clearance. The design concept of the improved blade, which suppressed the unsteady tip leakage flow instability, was tested and verified, and the effectiveness of the design guideline in actual gas turbines for power generation was confirmed.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056981","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this article, an unsteady tip leakage flow instability is identified and investigated for an axial compressor at near-surge conditions. We describe the results of experimental verification of a new compressor developed by improving the blade geometry based on the criterion for the occurrence of this unsteady phenomenon. In a high-speed multistage axial flow compressor having a subsonic high stagger rotor blade, a surge test was carried out by changing the tip clearance. Under a condition of large tip clearance, a drastic decrease in the static pressure rise coefficient near the surge point was observed. At this operating condition, large, unsteady pressure fluctuation at the blade tip was confirmed, and the occurrence of tip leakage vortex breakdown was clarified by unsteady multipoint pressure measurement and detailed unsteady numerical simulations. Due to the blockage effect caused by vortex breakdown of the tip leakage, double leakage and axially reversed flow near the trailing edge were observed. It was found that the vortex breakdown region of the tip leakage vortex propagated in the circumferential direction and caused the rotating instability. In order to investigate the relationship among this unsteady flow phenomenon, tip clearance size, and flow pattern, unsteady calculation was conducted by changing the blade tip stagger and tip clearance size. A new concept of tip clearance of staggered pitch reference was proposed, which makes it possible to include the effect of blade loading on the clearance and clarifies that there exists a threshold at which vortex breakdown occurs/does not occur. On the basis of the aforementioned results, a high-speed multistage improved compressor was designed and manufactured to prevent tip leakage vortex breakdown. A clearance change test using active clearance control technology was conducted, and an increase in the static pressure rise coefficient near the surge point was confirmed for each clearance. The design concept of the improved blade, which suppressed the unsteady tip leakage flow instability, was tested and verified, and the effectiveness of the design guideline in actual gas turbines for power generation was confirmed.
高速多级轴流压气机叶尖泄漏涡击穿研究
摘要本文对某轴流压气机在近喘振工况下的非定常叶尖泄漏流动失稳进行了识别和研究。本文描述了一种新型压气机的实验验证结果,该压气机是根据该非定常现象的发生准则改进叶片几何形状而研制的。在高速多级轴流压气机的亚音速高错列转子叶片中,通过改变叶尖间隙进行了喘振试验。当叶尖间隙较大时,在喘振点附近静压上升系数急剧下降。在此工况下,证实了叶尖处存在较大的非定常压力波动,通过非定常多点压力测量和详细的非定常数值模拟,明确了叶尖泄漏涡击穿的发生。由于叶尖泄漏涡击穿引起的阻塞效应,在尾缘附近出现双泄漏和轴向反流现象。研究发现,叶尖泄漏涡的涡击穿区沿周向传播,导致了转子的旋转失稳。为了研究这种非定常流动现象与叶尖间隙大小和流型之间的关系,通过改变叶尖交错和叶尖间隙大小进行了非定常流动计算。提出了交错节距参考叶尖间隙的新概念,使叶片载荷对间隙的影响成为可能,并阐明了存在一个发生/不发生涡击穿的阈值。在此基础上,设计并制造了一种高速多级改进型压气机,以防止叶尖泄漏涡击穿。采用主动间隙控制技术进行间隙变化试验,确定每个间隙在喘振点附近的静压上升系数都有所增加。试验验证了改进叶片的设计理念,抑制了非定常叶尖泄漏流动的不稳定性,验证了设计导则在实际燃气轮机发电中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
11.80%
发文量
168
审稿时长
9 months
期刊介绍: The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines. Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信