Non-degeneracy of the multi-bump solutions to the Brezis-Nirenberg problem

IF 1 3区 数学 Q1 MATHEMATICS
Haixia Chen, Chunhua Wang, Huafei Xie, Yang Zhou
{"title":"Non-degeneracy of the multi-bump solutions to the Brezis-Nirenberg problem","authors":"Haixia Chen,&nbsp;Chunhua Wang,&nbsp;Huafei Xie,&nbsp;Yang Zhou","doi":"10.1007/s10231-023-01395-y","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the well-known Brezis-Nirenberg problem </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u= u^{\\frac{N+2}{N-2}}+\\varepsilon u, &amp;{}{{\\text {in}}~\\Omega },\\\\ u&gt;0, &amp;{}{{\\text {in}}~\\Omega },\\\\ u=0, &amp;{}{\\text {on}~\\partial \\Omega }, \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>where <span>\\(\\varepsilon &gt;0\\)</span> and <span>\\(\\Omega \\subset \\mathbb {R}^N\\)</span> are a smooth bounded domain with <span>\\(N\\ge 3\\)</span>. The existence of multi-bump solutions to above problem for small parameter <span>\\(\\varepsilon &gt;0\\)</span> was obtained by Musso and Pistoia (Indiana Univ Math J 51:541–579, 2002). However, to our knowledge, whether the multi-bump solutions are non-degenerate that is open. Here, we give some straightforward answer on this question under some suitable assumptions for the Green’s function of <span>\\(-\\Delta \\)</span> in <span>\\(\\Omega \\)</span>, which enriches the qualitative analysis on the solutions of Brezis-Nirenberg problem and can be viewed as a generalization of Grossi (Nonlinear Differ Equ Appl 12:227–241, 2005) where the non-degeneracy of a single-bump solution has been proved. And the main idea is the blow-up analysis based on the local Pohozaev identities.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01395-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit the well-known Brezis-Nirenberg problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u= u^{\frac{N+2}{N-2}}+\varepsilon u, &{}{{\text {in}}~\Omega },\\ u>0, &{}{{\text {in}}~\Omega },\\ u=0, &{}{\text {on}~\partial \Omega }, \end{array}\right. } \end{aligned}$$

where \(\varepsilon >0\) and \(\Omega \subset \mathbb {R}^N\) are a smooth bounded domain with \(N\ge 3\). The existence of multi-bump solutions to above problem for small parameter \(\varepsilon >0\) was obtained by Musso and Pistoia (Indiana Univ Math J 51:541–579, 2002). However, to our knowledge, whether the multi-bump solutions are non-degenerate that is open. Here, we give some straightforward answer on this question under some suitable assumptions for the Green’s function of \(-\Delta \) in \(\Omega \), which enriches the qualitative analysis on the solutions of Brezis-Nirenberg problem and can be viewed as a generalization of Grossi (Nonlinear Differ Equ Appl 12:227–241, 2005) where the non-degeneracy of a single-bump solution has been proved. And the main idea is the blow-up analysis based on the local Pohozaev identities.

布雷齐斯-尼伦堡问题多凸点解的非退化性
我们重温著名的布雷齐斯-尼伦堡问题 $$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u= u^{frac{N+2}{N-2}}+\varepsilon u, &;{}{{text {in}}~\Omega },\ u>0, &{}{{text {in}}~\Omega },\ u=0, &{}{{text {on}~\partial\Omega },\end{array}\right.}\end{aligned}$where (varepsilon >0\) and (Omega \subset \mathbb {R}^N\) are a smooth bounded domain with \(N\ge 3\).Musso和Pistoia(Indiana Univ Math J 51:541-579,2002)得到了上述问题在小参数\(\varepsilon >0\)下存在多凸块解。然而,据我们所知,多凸块解是否非退化尚无定论。在此,我们在一些合适的假设条件下给出了这个问题的直接答案,即在\(\Omega \)中的\(-\Delta \)的格林函数,这丰富了对布雷齐斯-尼伦堡问题解的定性分析,可以看作是格罗西(Nonlinear Differ Equ Appl 12:227-241,2005)的概括,在格罗西的文章中证明了单凸点解的非退化性。其主要思想是基于局部 Pohozaev 特性的炸开分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信