Diffusion models in bioinformatics and computational biology

Zhiye Guo, Jian Liu, Yanli Wang, Mengrui Chen, Duolin Wang, Dong Xu, Jianlin Cheng
{"title":"Diffusion models in bioinformatics and computational biology","authors":"Zhiye Guo, Jian Liu, Yanli Wang, Mengrui Chen, Duolin Wang, Dong Xu, Jianlin Cheng","doi":"10.1038/s44222-023-00114-9","DOIUrl":null,"url":null,"abstract":"Denoising diffusion models embody a type of generative artificial intelligence that can be applied in computer vision, natural language processing and bioinformatics. In this Review, we introduce the key concepts and theoretical foundations of three diffusion modelling frameworks (denoising diffusion probabilistic models, noise-conditioned scoring networks and score stochastic differential equations). We then explore their applications in bioinformatics and computational biology, including protein design and generation, drug and small-molecule design, protein–ligand interaction modelling, cryo-electron microscopy image data analysis and single-cell data analysis. Finally, we highlight open-source diffusion model tools and consider the future applications of diffusion models in bioinformatics. Diffusion models are deep-learning-based generative models that can generate new data from input parameters. This Review discusses applications of diffusion models in bioinformatics and computational biology.","PeriodicalId":74248,"journal":{"name":"Nature reviews bioengineering","volume":"2 2","pages":"136-154"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44222-023-00114-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Denoising diffusion models embody a type of generative artificial intelligence that can be applied in computer vision, natural language processing and bioinformatics. In this Review, we introduce the key concepts and theoretical foundations of three diffusion modelling frameworks (denoising diffusion probabilistic models, noise-conditioned scoring networks and score stochastic differential equations). We then explore their applications in bioinformatics and computational biology, including protein design and generation, drug and small-molecule design, protein–ligand interaction modelling, cryo-electron microscopy image data analysis and single-cell data analysis. Finally, we highlight open-source diffusion model tools and consider the future applications of diffusion models in bioinformatics. Diffusion models are deep-learning-based generative models that can generate new data from input parameters. This Review discusses applications of diffusion models in bioinformatics and computational biology.

Abstract Image

Abstract Image

生物信息学和计算生物学中的扩散模型
去噪扩散模型体现了一种可应用于计算机视觉、自然语言处理和生物信息学的生成式人工智能。在这篇综述中,我们将介绍三种扩散建模框架(去噪扩散概率模型、噪声条件评分网络和评分随机微分方程)的主要概念和理论基础。然后,我们探讨它们在生物信息学和计算生物学中的应用,包括蛋白质设计和生成、药物和小分子设计、蛋白质配体相互作用建模、冷冻电镜图像数据分析和单细胞数据分析。最后,我们重点介绍了开源扩散模型工具,并探讨了扩散模型在生物信息学中的未来应用。扩散模型是基于深度学习的生成模型,可以根据输入参数生成新数据。本综述将讨论扩散模型在生物信息学和计算生物学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信